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In many cases, variational transition states for a chemical reaction are significantly displaced- 
from a saddle point because of zero-point and entropic effects that depend on the reatition 
coordinate. Such displticemehts ai’e often controlled by the competition between the potential 
energy along the minimum-energy reaction path and the energy requirements of one or more 
vibrational modes whose frequencies show a large variation along the reaction path. In 
calculating reaction rates from potential-energy functions we need to take account of these 
factors and-especially at lower temperatures-to include tunneling contributions, which also 
depend on the variation of vibrational frequencies along a reaction path. To include these 
effects requires more information about the activated complex region of the potential-energy 
surface than is required for conventional transition-state theory. In the present article we show 
how the vibrational and entropic effects of vaTiationa1 transition-state theory and the effective 
potentials and effective masses needed to calculate tunneling probabilities can be estimated 
with a minimum of klectronic structure’information, thereby allowing their computation at a 
higher level of theory than would otherwise be possible. As examples, we consider the reactions 
OH + HZ, CH, + II,, and Cl + CH, and some of their isotopic analogs. We find for 
Cl+CH,+ HCl + CH, that the reaction rate is greatly enhanced by tunneling under 
conditions of interest for atmospheric chemistry. 

I. INTRODUCTION 

Electronic structure theory is constantly reaching new 
levels of sophistication and reliability, and its use to calculate 
the energetics of transition states is now very widespread.’ 
The calculation of rate constants is more difficult. At the 
simplest level, which is conventional transition-state theory 
with harmonic force fields and no tunneling contribution,2s3 
rate constants depend on the geometries, energies, and vibr& 
tional frequencies of saddle points and reactants. Fo; more 
accuracy, one can use variational transition-state theoiy 
(VTST), and it is often important to include tunneling efi 
fects in a transmission coefficient.3-s These in?pf6vement$ 
require more information about the potential-energy sur- 
face. Usually, this has involved constructing an analytical 
potential-energy function (PEF) to represent the interac- 
tions between atoms in the system.‘rc’@  However,‘ihis’is not 
a simple task, especially for larger systems for which‘exten- 
sive electronic structure calculations for a large number of 
geometries may be required in calculating the parameters of 
the PEF. Furthermore, the choice of a functional form for 
the PEF for a reacting system may have to be based largely 
on the investigator’s intuition since no rules exist for ensur- 
ing the correct global topology. Thus, it is of great interest to 
develop systematic methods for calculating the quantities 
needed for variational transition-state theory and timneling 
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calculations with aminimum of electronic structure calcula- 
tions. The use of analytical gradient,’ Hessian,* and higher- 
derivative9 techniques provides a promising avenue for pur- 
suing this goal because it allows for the efficient generation 
of local representations of the potential in a valley following 
a reaction path. 

In a previous paper, loca) several models were suggested 
to interpolate the data needed for classical microcanonical 
variational rate constants for collinear atom-diatom reac- 
tions, and the results obtained with these methods are en- 
couraging. Related work by Gray et al. 10(b’ and Carrington 
et al. lo(‘) employed quadratic interpolation of reaction-path 
frequencies in tunneling calcultitions on unimolecular reac- 
tions. Here, we extend this approach to canonical variational 
transition-state-theory rate constants for multiatom bimol- 
ecular reactions incltiding quantum-mechanical effects. of 
zero-point etiergies, quanta1 vibrational entropic effects, and 
tunneling. We not only propose new algorithms but we test 
them systematically against full calculations carried out 
without interpolation, and we also present a demanding ap- 
plication involving’extended-basis-set electronic structure 
csildulations. Variational transition-state theory including 
the effedts of quantized vibrations and with tunneling contri- 
butions estimated by semiclassical models is called semicl%- 
sical VTST, and variational transition-state theory based on 
interpolation of information available at a few points is 
called interpolated VTST. In the present study, we explore 
the question of how reliably we can carry out such semiclas- 
sical dynamical calculations if we have electronic structure 
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calculations (i.e., energy and first and second derivatives of 
the energy) only at the reactant, product, and saddle-point 
geometries and at most at one or two other points along the 
reaction path, close to the saddle point, but not necessarily at 
the variational transition state. 

In Sec. II, we propose several interpolation models for 
semiclassical variational transition-state theory, and in Sec. 
III B we test them for reactions of OH and CH, with H,, 
D, , and HD by comparing their predictions to full calcula- 
tions carried out without interpolation. In Sec. III C, we 
apply the semiclassical interpolated VTST procedures to the 
reaction of Cl with CH, using electronic structure data from 
a previous study of the saddle point” and new calculations 
performed for the present study at two points slightly re- 
moved from the saddle point, and we compare the resulting 
temperature-dependent rate constants and activation ener- 
gies to experiment. The reaction of Cl atoms-with hydrocar- 
bons is a prototype for reactions important in the upper at- 
mosphere. 

II. THEORY 
LA. Semiclassical VTST 

The semiclassical VTST rate constant to be considered 
in this paper is given by5*12 

kCW’G(T) =KG(T)kCv=(T), (1) 
where T is the temperature, K~( T) is a ground-state (G) 
transmission coefficient which primarily accounts for tun- 
neling, and k cvT( T) is the “hybrid” canonical variational 
transition state theory (CVT) rate constant for which bound 
vibrations are quantized but reaction-coordinate motion is 
classical. The hybrid theoretical rate coefficient kCVT( TJ 
can be obtained by variationally minimizing the generalized 
transition-state-theory rate constant k cT( T,s) with respect 
to the position s of the generalized transition state along the 
reaction coordinate, 

kCVT(T) =minkc=(T,s), 
5 

where5,12 

(2) 

kG=(Ts> - fl QGT(T,s) ,-~b.,,,cs, 
b'h QR(T) 

(3) 

In this equation, s is the distance of the generalized transition 
state along the minimum-energy reaction path13-r5 through 
a mass-scaled Cartesian coordinate space5 (with all masses 
scaled to a specific but arbitrary mass constant p, with s = 0 
at the saddle point, and with the positive direction of s 
towards the products; in this paper the mass-scaled coordi- 
nate systems are based on takingy equal to the reduced mass 
of relative translational motion of bimolecular reac- 
tants5.i4 ), ais the symmetry factor accounting for the possi- 
bility of two or more symmetry-related reaction paths, p is 
(&T) - I, k is Boltzmann’s constant, h is Planck’s constant, 
Q R( T) is the reactant partition function (per unit volume 
for bimolecular reactions), V,,, (s) is the classical energy 
(also called the Born-Oppenheimer potential) along the 
minimum-energy path with its overall zero of energy at the 

reactant, and Q dT( T,s) is the partition function of the gen- 
eralized transition state at s with the local zero of energy at 
V,,, (s). Both partition functions are approximated here as 
products of electronic, vibrational, and rotational partition 
functions. For vibrations, the harmonic approximation is as- 
sumed for all cases in the present article. Thus the vibration- 
al information required is just the set of harmonic frequen- 
cies as a function of s. The rotational partition function 
required is just the product, denoted 1, of the three principal 
moments of inertia, which can be calculated straightfor- 
wardly from the geometry. The generalized transition-state 
electronic excitation energies and degeneracies are assumed 
to be the same as at the transition state. In the cases treated 
here we assume no low-lying excited states of the saddle 
point. Thus, to calculate k CVT( T), we require the energy, 
the product of the three principal moments of inertia, and 
the bound-mode frequencies for the reactants and for a range 
of points along the reaction path and the electronic degener- 
acies and excitation energies of low-lying electronic states of 
reactants and the electronic degeneracy at the saddle point. 

The correction at temperature T for quanta1 motion 
along on the reaction coordinate is approximated as the ratio 
of the thermally averaged multidimensional semiclassical 
ground-state transmission probability T G to the thermally 
averaged classical ground-state transmission probability 
Tg for one-dimensional scattering by an effective potential 
equal to the ground-state adiabatic potential curve 
V,G(s>. %I2 The CVT transition-state location for tempera- 
ture Tisdenotedass = <“‘( T). Thevalueof V~[S:“~( 7’) ] 
is the quasiclassical ground-state threshold energy implied 
by a CVT calculation, and it will be called E, ( 7’). Then 

K(T) = 
J+; TG(E)ehoEdE 

-L=d,q * 
(4) 

S.&:,, e 

Notice that the integral in the numerator of Eq. (4) involves 
E > E* ( T), as well as tunneling energies below this. Thus, 
the semiclassical transmission probability TGCE) accounts 
for both nonclassical reflection at energies above the quasi- 
classical threshold and also nonclassical transmission, i.e., 
tunneling, at energies below that threshold. Because of the 
Boltzmann factor in Eq. (4), tunneling is by far the more 
important of the two effects. 

We will consider reaction-path approximations to the 
ground-state transmission probability T G( E) . In these ap- 
proximations the transmission probability at energy E is ap- 
proximated semiclassically by5.‘27’63’7 

I: 1 + e2e(E)] 2, E,, GE< Vf”, 

1 - TG(2VfG- E), V;G<E<2VtG- E,, 
1, 2VtG- E,,<E, 

(5) 

where Vt” is the maximum of V:(s), E, is the energetic 
threshold energy given by 

E. =max{Vz(s= - co),Vz(s= + CO)), (6) 
and 8(E) is the imaginary part of the tunneling action inte- 
gral, which is expressed as 
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B(E) = + -3% (S) [ v:(s) - E ]}“‘ds, (7) 

for E < Vt”. In Eq. ( 7)) s, and s < are the classical turning 
points for reaction-coordinate motion, i.e., the locations on 
the reaction path where V:(s) = E, and,uu,, (s) is the effec- 
tive reduced massl’ whose value accounts for reaction-path 

; curvature. The simplest approximation to ,~~e (s) is to set it 
equal to the constant reduced mass p of the mass-scaled co- 
ordinate system, which corresponds to tunneling along the 
minimum-energy path and neglecting reaction-path 
curvature.12914 This is called the minimum-energy-path se- 
miclassical adiabatic ground-state (MEPSAG) approxima- 
tion, l2 or-for brevity-the zero-curvature tunneling (or 
ZCT) approximation. I4 In a more accurate treatment we 
include reaction-path curvature, and when this is done un- 
der the assumption of smah curvature, we call it a small- 
curvature-tunneling (SCT) approximation. The SCT ap- 
proximation used in the present paper is our original 
small-curvature semiclassical adiabatic ground-state 
(SCSAG) approximation, which makes,uea (s) a function of 
the minimum-energy-path ( MEP ) curvature components 
and generalized normal-mode turning points as functions of 
~.~.i’ We will compare our interpolated.VTST results for the 
test cases to full VTST calculations employing both the ZCT 
and SCT approximations. 

For convenience we alw,ays define VMEp (s) = 0 at reac- 
tants, i.e., for bimolecular reactions, at s = - CO. This de- 
fines the zero of energy. In addition we always places = 0 at 
the saddle point, which defines the origin of the reaction 
coordinate. 

The vibrationally adiabartic ground-state potential-ener- 
gy curve is expressed as (for nonlinear generalized transition 
states) 
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the ground-state generalized normal-mode turning points 
t, (s), and their derivatives dt,,Jd~.~(~‘~” These quantities 
can all be calculated from a knowledge of the Hessian matrix 
as a function of s. 

One of our goals in this paper is to study whether the 
reaction-path functions needed for these calculations can be 
approximated adequately by interpolation. 

LB. Models for interpolated VTST 

In the following discussion, we present five interpola- 
tion algorithms for semiclassical VTST calculations of gas- 
phase reactions involving two reactants and two products. 
(Generalizations to treat unimolecular or association reac- 
tions are possible but have not been tried so far.) In each 
algorithm, the classical energy along the reaction coordi- 
nate, the moment of inertia product, the vibrational frequen- 
cies, and the effective mass for tunneling are interpolated 
from information (geometries, energies, and frequencies) 
about the reactants, products, and saddle point, and at most 
two extra points on the minimum-energy path near the sad- 
dle point. In two of the algorithms the vibrationally adia- 
batic ground-state potential curve is evaluated by adding the 
classical energy to the zero-point energy calculated from the 
fits to the frequencies, whereas in the other three cases this 
curve is fitted independently. In this section we introduce the 
procedures; further details specific to the individual algo- 
rithms are given in Sets. II B l-11 B 5. 

In all five algorithms, we interpolate the potential-ener- 
gy curve V&G .by an Eckart function” which has the form 

v,,, (s) = -!.JI- + BY 
l+Y i (l+Y)?’ ._ 

Pa) 

3N-- 7 

v:(s) = V&P 6) + ‘7 g*,, (s), 
,‘z I 

where m denotes a generalized normal-mode vibration or- 
thogonal to the reaction coordinate, and E$, (s) is its zero- 
point energy at s. Since we use the harmonic approximation, 
we have 

ye e(s-w/= , Pb) 

where A, B, and L are independent parameters, and S, deter- . . 
mines the location of the maximum of V,, along the s axis. 
We determine Se such that this maximum occurs at s = 0, 
i.e., the origin of the s axis (s = 0) is set at the saddle point. 
Thus 

,4 = v,,, (s = + co ), 

B= (2Vf-A) +2[Vf(V+-A)]“2, 

(1W 

(lob) 
3N--7 

vm = V,,,(s) + pc Y w, @I, 
Pitt1 

(8b) 

where c is the speed of light, and wi is a generalized normal- 
mode frequency, in wave numbers.5’b’ The maximum of the 
V:(s) curve and its location are denoted as VtG and e”, 
respectively. 

S,= -Lln$$ , 
( > 

Thus, in the ZCT approximation, the evaluation of the 
transmission coefficient K~( 7’) requires no additional ‘infor- 
mation over that required for the k cv’r( 7’) calculation, ex- 
cept that for kCVT( T) we need the generalized vibrational 
frequencies w, (s) only over a possibly small range ofs, in the. 
vicinity of the saddle point just large enough to find the ex- 
tremum in Eq.. (2) at all temperatures of interest, whereas 
tunneling calculations are-sensitive to V:(s) over a wider 
range of s. 

In the SCT approximation we require one additional 
quantity, the effective mass puce (s) of Eq. (7), which is a 
function of the reaction-path curvature components K, (s), 

where V # is the classical barrier height, i.e., V,, (s = 0). 
Notice that A equals the classical endoergicity since 
V,,, (s-= - C=Y) = 0 by convention. 

The product I of the principal moments of inertia is 
modeled by the quadratic form 

I(s) = 00) + 4s +x6 (11) 
where R and ,y are paramete% ’ 

The vibrational frequencies are modeled by one of three 
possible equations, either by 

@j(S) =@i(w(l +ffjs+&v, (12) 
or by i 

aiYi q(s) =- b[Yi 
1 +y* + (1+Yi)2 

+c, -c (13a) 

with L_ 
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y, =: #p - “J”‘i, 

or by 
(13b) 

oi (s) = ai tanh ~ + ci, (14) 

where ai, pi, ai, bi, ci, s~,~, Ii, and siO) are parameters. 
In some cases, the adiabatic curve is modeled by an Eck- 

art function which has the form 

V,G(s) = --.fz- + 
l+Y 

by fc 
(l+yP ? 

(15a) 

y=e 0 -Q/l 2 (15b) 
where a, 6, c, and I are independent parameters, and so deter- 
mines the location of the maximum of Vzalong the s axis, In 
fitting V,“, we have 

a=AHz = Vz(s= + no) - Vz(s= - ~a), (l&t) 

b = (2AVaG -a) + 2[AVtG(AJ?2G- a)]“‘, (16b) 

c=&(s= -co), (16~) 

(16d) 

where AVtG denotes the vibrationally adiabatic ground- 
state barrier height relative to the reactant, i.e., 

3N--7 
AViG= V:“- C E&(s= - co). (17) 

ii;; 1 

Notice that for bimolecular reactions the second term of Eq. 
( 17) is the total zero-point energy of the reactants. 

In other cases, as specified below, the adiabatic curve 
V:(s) is obtained from Eq. (8b) using the fits to V,,, (s) 
and wi (s). 

Finally, the effective mass is modeled by an inverted 
symmetric Eckart function, which has the form 

bPY P.&(S) = (1 +y)2 + .p, 

where 

(18a) 

y = p/L (18b) 

and b,, is a new parameter. The extra factor of 2 in the expo- 
nent of Eq. ( 186) is motivated by the analogy to a Morse 
curve, which has the form D, (e - 2aX - 2e -uX). The short- 
range forces that control reaction-path curvature are analo- 
gous to the short-range repulsionslii the first term of a Morse 
curve, while the range parameter in Eq. (9) is controlled by 
bonding interactions similar to those in the second term of 
the Morse potential. In the models used here we will interpo- 
late peff (s) based on its asymptotic values ,uUeR ( f CO ) = ,u 
and its value at the saddle point ,ueR (0). Evaluation of the 
latter requires the curvature components, turning points, 
and turning-point derivatives at the saddle point. The curva- 
ture vector at the saddle point is obtained by using Eq. ( 19) 
in the paper of Page and McIver;’ this requires the compo- 
nents of the third derivatives of the potential energy along 
the path tangent at the saddle point, and these are found by 
finite differences. The turning points are obtained from 

t,,, (s) = (h /cw,p ) ln/277-. (19) 
We approximate the derivatives of the generalized normal- 
mode turning points at the saddle point by finite differences 
from the available data. 

In summary, we need VMEP, 1, and the wi, to calculate 
k oVT; we need these quantities plus V,G to calculate the ZCT 
transmission coefficient; and we need all of the above plus ,* 
P eR to calculate the SCT transmission coefficient. Since 
several of the independent parameters, namely A, B, a, b, c, 
ai, ci, wi (0), and I(0) are determined from the reactant, 
saddle point, and product properties that are assumed to be 
known in all models, what remains for CVT calculations is 
to obtain values of L for Eqs. (9b) and ( 18b), ;1 andx for Eq. 
(ll), cri andfl, for Eq. (12>, and bi, s~,~, Zi, andsj” for Eqs. 
(13a), ( 13b), and ( 14). For ZCT calculations where Eqs. 
( 15a) and ( 15b) are used, we need to obtain values for I. For 
SCT calculations, the parameter b, of Eq. ( 18a) must also 
be determined. We next describe the procedures used to ob- 
tain these parameters. 

/LB. 7. Zero-order (-0) interpoIation 

This model-assumes that information is only available at 
the reactant (R ) , saddle point ( # ) , and product (P) . Thus 
there is not sufficient information to evaluate k =“=( 7J, and 
we approximate k CVT( T) by the conventional transition- 
state rate constant, k + ( T), in this model. Since we use con- 
ventional transition-state theory in this model we do not 
need Eqs. ( 11) -( 14). However, we do include tunneling in a 
zero-curvature approximation. To evaluate the transmission 
coefficient, K~( T), we need the vibrationally adiabatic 
ground-state potential-energy curve, V:(s), which is ap- 
proximated as follows. 

First, we estimate V,,,; for this fit the range parameter 
L is obtained from the imaginary frequency, uzt at the sad- 
dle point by 

L2= I 2V”(V7’--A) 
p(w”)‘B - 

(20) 

Note that since w# is imaginary, we need the minus sign to 
make L ’ positive and physically meaningful. 

Then, to zero order, we approximate I by L and s:” by 
zero, i.e., the range parameter and the location of the maxi- 
mum of the V,” curve are assumed to be the same as for 
v MEP * 

The final rate constant obtained by this zero-order 
model is denoted as k +/zcT-o for obvious reasons. We note 
that this #/ZCT-0 model has been presented previous- 
ly,‘@ but we give it here in the present systematic notation 
to show its role as the first in a sequence of approximations. 

11.8.2. First-order local (- IL) interpolation 
The first-order algorithms assume that information is 

only available at R, #, P, and one extra point, s = s, , on the 
reaction path near the saddle point. (Note that s1 may be 
positive or negative.) We will present two such algorithms: 
both are called first order because of the single extra point. 
They differ in that, for some of the interpolations, namely 
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the moments of inertia and vibrational frequencies, there is a 
choice whether to base the interpolation only on local data, 
ats = 0 and s = sl, or to also use global information, i.e., the 
behavior at s = f CO. For other quantities we use global 
information in both algorithlms (although not always in the 
same way); nevertheless, the algorithms are called first-or- 
der local and first-order global depending on the choice 
made for the moments of inertia and vibrational frequencies. 
The first-order local interpolation procedure is as follows. 

First, VMEP is represented by an Eckart function, with 
the parameter L determined by requiring that the Eckart 
function goes through the additional point at s = s, . 

The product I(s) of moments of inertia and the vibra- 
tional frequencies wI (s) are linearly interpolated in the vi- 
cinity of the saddle point by Eqs. ( 11) and ( 12)) respective- 
ly, with x = pi = 0. (For the rare case of a symmetric 
reaction, i.e., one for which reaction-path variables are even 
functions of s, we would instead set A = ai = 0.) The non- 
zero parameters in Eqs. ( 11) and ( 12) are obtained from the 
dataats=Oands=s,. 

Next, Eqs. (8a), (8b), and (12) are used to evaluate V,” 
locally in the vicinity ofs = 0 and s = sl, and the locations”,” 
is found from this local fit. The model is not applicable if the 
maximum of V,” found by using Eqs. (8a) and (8b) does not 
turn out to be in a range of s where Eq. ( 12) is still valid. 

To carry out the tunneling calculations, V ,” is represent- 
ed by an Eckart function, Eqs. (15a) and (15b) with the 
parameters b ands, determined from the above estimation of 
V,“(s = sz”) and the parameter I obtained by requiring that 
the Eckart function goes through either V,“(s = 0) or 
Vz(s = s, ), using whichever of those two points lies farthest 
along the s coordinate from d*G. 

The final rate constants without tunneling and with 
zero-curvature tunneling are denoted as kCVTMIL and 
k cvT’zcr-lL, respectively. 

In the first-order local model, the curvature vector at 
the saddle point is evaluated as explained above Eq. (19). 
We used one-sided differences for the third derivatives along 
the tangent path as well as for the derivatives of the general- 
ized turning points. The effective mass is modeled by Eqs. 
(18a) and ( 18b) with the parameter bp determined by re- 
quiring that the symmetric Eckart function goes through 
pER (s = 0). The resulting rate constant is called k CVT’SCT-lL. 

X8.3. First-order global (- 1 G) interpolation 

This model is similar to the previously discussed first- 
order model except for the interpolating procedures for the 
product I(s) of the three principal moments of inertia, for 
the frequencies wI (s), and for the vibrationally adiabatic 
ground-state potential curve Vz. I(s) and the frequencies 
are now interpolated in a way that pays more attention to 
their global behavior in the asymptotic limits, and VE is now 
based on the fits to the wi. In particular, for I(s), we assume 
that the additional point at s = s1 is calculated by a step of 
size 6s in the direction of the eigenvector corresponding to 
the saddle-point imaginary frequency; then we also calculate 
the geometry at s = - s, by taking the same size step in the 

opposite direction from the saddle point. (This does not re- 
quire any additional electronic structure calculations.) The 
variable I(s) at s = - sl, 0, and s1 is then fitted to Es. ( 11). 
In all test cases below, we found that x is positive, thus Eq. 
( 11) satisfies the asymptotic limits of I that is I( s = f CO ) 
= + co. If this does not occur, we suggest increasing the 

step size in the - s, direction until it does occur. 
The generalized vibrational frequencies, wi (s) , are fit- 

ted with the requirement that they have physical asymptotic 
limits, w!,~ and w[,~, at both reactants and products, respec- 
tively, by the following procedures. We consider two ways to 
assign these limits; we will label global interpolation algo- 
rithms using the first of the methods G, and we will label 
those using the second GP. In the G approach we order the 
modes using only frequency information, and in the GP ap- 
proach we permute the asymptotes based on physical mode 
correlations. We think that the G approach is important to 
test because it may be the only possible alternative for com- 
plicated, low-symmetry cases or where there is insufficient 
information to make physical mode correlations. We think, 
however, that the GP approach should be more accurate 
when it can be applied. The next four paragraphs explain the 
G approach. 

First, label the frequencies in descending order, ignoring 
symmetries and giving separate numbers to each component 
of degenerate sets. (Label the frequencies independently at 
each value of s, namely - 00, 0, sl, and + CO.) There are 
three cases to be considered. 

( 1) If wi (s = s1 > and w, (s = 0) are both above or both 
below the ith largest reactant and product frequencies, w~,~ 
and @i,p, respectively, we use an Eckart function of the form 
given by Eqs. (13a) and ( 13b) with 

ai =oi(s= CO) -wi(s= - CO) =wisp -~3~,~, (21a) 

ci =wi(s= - co) =WLR. (21b) 

This leaves bi, Ii, and s,,~ to be determined from wi (s, ) and 
coi (0). ‘First; by assuming the range parameter I, in Eq. 
( 13b) is the same as L, it can be shown that for all Eckart 
functions that go through w~,~, wi (0), and w,,~, the value of 
@i at s==sl is bounded within the interval I, 
= [ m~(s, ),w~(sl ) 1, where 

WY = min(wT,&, (22a) 
w;Y = max(wp,wf>, (2%) 

@(s, ) = [w,(O) - Ci]eipl + ci, WC) 
and 

~~(~,)=a~(l-e~‘~~)+[o~(O)-c~]e’~’+c~. (22d) 

Note: the relative magnitude of the two limiting frequencies 
in (22~) and (22d) depends on the sign of s,, ai, and 
[w,(O) - Ci]. If CBi(S1) is not in I, we change the range 
parameter Z,. in the following way: if wi (s, ) > wr(s, ) we 
change Ii by the minimum amount such that 
wi(s, ) = WY - w,; if wi(sI ) <wy(s, ) owe change Ii by the 
minimum amount such that wi (sl ) = wy(s, ) + wo. We 
have tested three different values of w,,, in particular, 
w, = 5, 10, and 15 cm- I, and we have found that all three 
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values always gave physical and numerically stable results. 
Thus, we chose a value, w. = 10 cm- ‘, in the middle of the 
stable range, for all results presented in this paper, and we 
recommend this as the default value for future applications. 
(We also recommend retesting for stability with respect to 
increasing w,.) Once the range parameter Ii is set, the pa- 
rameters bi and sO,r can be determined by solving the nonlin- 
ear system of equations obtained by equating ( 13a) to wi (s) 
at s = - CO, 0, s1 , and + M). The solution is analogous to 
Eqs. (16b) and (16d). 

curve, we have fit a cubic spline to the energy values obtained 
with (8b) on a fine grid, and the maximum of the adiabatic 
curve is determined from the spline fit. However, since we 
converge the results with respect to the spline node spacing, 
this is really just a detail of the numerical coding, and it does 
not change the results compared to what would be obtained 
from working directly with Eq. (8b).] The resulting rate 
constant is denoted as k CVT’SCT-‘G. 

(2) The second case is when the frequencies wi (0) and 
wi (si ) are between the corresponding reactant and product 
frequencies, tiLR and w~,~, and vary monotonically in moving 
from the reactants to the products [for instance cnLR 
> wi (0) > ~i)~ (s, > 0) > w~,~]. In this case we use a hyperbo- 
lic tangent of the form ( 14) with 

The first-order global with permutation ( 1GP) model is 
the same as the 1G model except that before using the fitting 
functions for wi (s) the asymptotic (reactant and product) 
mode frequencies are permuted (i.e., reordered) according 
to the physical mode correlations for the specific reaction 
under consideration. An example of such a permutation is 
given in Sec. III B 1. 

q(s= co) -wi(s=-- co) 
ai = 

wi,p -Wi,$ = 
2 2 ’ 

(Da) 
11.6.4. Second-order local (-2%) interpolation 

ci = 
wi(s= co) +o,(s= - co) Oi,P -f- Wi,R 

= 
2 2 . 

(23b) 

The second-order models assume that information is 
available at R, f , and P, and two extra points, s = s1 and sZ, 
on the reaction path near the saddle point. We assumes, and 
s2 lie on opposite sides of the saddle point. 

This leaves Ii and sf”’ to’be determined from wi (s, ) and 
w,(O). 

(3) Finally, ifw, (0) and wi (sr ) do not fall into either of 
the above two cases, then we adjust one of the end points in 
the following manner so that one of-these cases is achieved. 
(The adjustment is performed only for purposes of the fit to 
this frequency to be used nears = 0; the correct asymptotic 
properties are still used for interpolating the next frequency 
and in the reactant partition function for generalized transi- 
tion-state theory calculations.) If sr is on the reactant side, 
then we change the product frequency for mode i to w$ 
where c$ is the value, restricted to a whole number in cm - ’ 
units, for which the solution starts to exist. (For the case of 
s, on the product side, we follow the same procedure except 
that the reactant value is adjusted.) The value of c$ is deter- 
mined by an iterative approach using the criterion of case. 
(1). For instance, if mLR >o,(O) and wj(s, > 0) >wip but 
wi (0) < wi (s, ), then mLR is decreased from wI (0) in incre- 
ments of 1 cm,- ’ until an Eckart fit starts to exist; the value 
for which this occurs is c$. Then, wi (s) is refit using case 
( 1) . This procedure assures a minimum change in the end 
points, and it results in an acceptable Eckart fit in all cases. 

The classical potential, V,,, , is modeled by Eq. (9a), 
but now L is taken as the average between the value obtained 
by requiring that the Eckart function goes through s = 0 and 
s = s, and the value obtained by requiring that it goes 
through s = 0 and s = s, . 

The functions I and wi are evaluated as in the first-order 
local model, except that the information at the second addi- 
tional point is used to evaluate all the parameters in Eqs. 
(11) and (12). 

. . The final rate constants without tunneling and with 
zero-curvature tunneling are denoted as kCVTmZL and 
k cvT’zc’r-2L, respectively. 

In the second-order local model, the evaluation of the 
curvature vector at the saddle point differs from the first- 
order methods in the use of central differences instead of 
one-sided differences to approximate the components of the 
third derivatives of the potential and the first derivatives of 
the turning points along the path tangent. The effective mass 
is modeled by Eqs. ( 18a) and ( 18b), exactly in the same way 
as in the first-order methods, i.e., with b, determined by 
requiring that the inverted Eckart goes through pcrr (s = 0). 

The resulting rate constant is called k cvT’scT-2L. 

The interpolation model just described is called first- 
order global ( 1G). The final rate constants without tunnel- 
ing and with zero-curvature tunneling obtained by this 
method are denoted as k CVT-lG and k CVT’zCT-‘G, respective- 
ly. 

11.5.5. Second-order globii(-2G) interpolation 

In the first-order global model, the effective mass is 
modeled by Eqs. ( 18a) and ( 18b), exactly as in the first- 
order local model. The difference in the SCT calculation is 
not in the effective mass, but rather in V$. For the 1G calcu- 
lation we use the analytical function (8b) obtained with the 
E&art function [(!?a) and (9b)] for V,,, and the global 
fits [(13a), (13b), or (14)] forthefrequencieswi(s). [For 
convenience in finding the turning points on this adiabatic 

This model assumes that information is available at R, 
# , P, and two extra points, s = s, ands = s,, on the reaction 
path, near the saddle point. The V,,, curve is interpolated 
in the same way as in the second-order local model. The 
product 1(s) of the three principal moments of inertia and 
the vibrational frequencies wi (s j are required to have the 
correct asymptotic limits as in the first-order global interpo- 
lation model. But now the information at the second addi- 
tional point is used, when possible, to evaluate all the pa- 
rameters in the equations. In some cases, when we use the 
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data at s = s1 , 0, and s1 to At I(&), x does not turn out posi- 
tive as required for correct asymptotic limits. In these cases 
we move s, farther from the saddle point until x is non- 
negative. [Note: s, is moved only for the fit to I(s) since this 
does not require additional electronic structure calcula- 
tions.] 

The procedure followed to decide which interpolating 
function has to be used for the frequencies, wi, is the G ap- 
proach, just as in the first-order global model. We assume 
that because s = 0, si , and s, are very close, no new cases 
arise. For instance, if o, (0) and o, (sr ) are both above uLR 
and ~r)~,~ (case 1 ), we assume wI (s2 ) is above these asymp- 
totes as well, and that we may use an Eckart function. We 
have not found any exception to this rule among the reac- 
tions studied in this paper, although there might be some 
special cases that should be taken into account in order to 
obtain a better fit to the three frequencies. 

The differences between the two global models in inter- 
polating the frequencies are ,the following. 

( 1) In the second-order global algorithm for case ( 1) , 
the parameters Ii, bi, and s ,j,, were determined by solving 
the nonlinear system of equations (13), with ai 
===w)(s= -CO) andci=w,(s= w),ats=O,s,,ands,. 

The solution to the nonlinear equations could not be con- 
verged in only one case. In this case, however, the difference 
~y&Iyd”,; fit @I (s2 ) I was less than 2.5 cm - ‘, so we used 

(2) In the second-order global algorithm for case (2), 
the hyperbolic tangent functions are the same as those ob- 
tained in the first-order global algorithm, although we have 
checked that the inequality Iwr(s2 ) (-1G) - wi (s2 ) 1~2.5 
cm-l is always satisfied. 

(3) Finally, if wI (0)) wi (s, ), and wi (s, > do not belong 
to either of the above two cases, we adjust one of the end 
points in the following manner so that one of these cases is 
achieved. As in the first-order global model, the adjustment 
is performed only for purposes of the frequency fit. First, we 
find the “most distant” end point from the interpolation re- 
gion. If, for instance, s, is on the reactant side, and sr is on 
the product side, and @j,R > Wi (S2 ) < 6~~ (0) < Oi (S, ) > w~,~, 
then the most distant end point is w~,~. Then the asymptotic 
frequency at the most distant end point is incremented or 
decremented with a small step size (Am = 1 cm - ’ ) until an 
Eckart fit starts to exist; the value for which this occurs is wf. 

The final rate constant without tunneling is denoted 
LXT-2G k . 

For the evaluation of the tunneling effect we again 
evaluate V:(s) by Eq. (8b) as in the first-order global mod- 
el, and the effective mass is modeled as in the second-order 
local method. The final rate constants with tunneling are 
denoted as k CVT/ZCG-2G and k CVT/SCT-2G. 

The second-order global model with permuted asymp- 
totic vibrational frequencies (2GP) is the same as 2G except 
that prior to fitting the frequencies the asymptotic (reactant 
and product) vibrational frequencies are permuted from 
their strictly descending sequence according tothe physical 
characters of the modes for the specific reaction under con- 
sideration. An example of such a permutation is explained in 
sec. III B 1. 

111. CALCULATIONS 
MA. Computational details 

Procedures for variational transition-state theory calcu- 
lations on polyatomic reactions are presented elsewhere5’b? 
and only a few details are mentioned here. 

For all reactions except one, generalized normal-mode 
frequencies were evaluated by the projection operator meth- 
od.5Y1g The exception was the Cl + CH, reaction. In this 
case, as sometimes found previouslyzo for ab initio points 
very close to the saddle point, the projection direction is un- 
stable because the gradient is very small, so we used unpro- 
jetted frequencies. This is a reliable procedure near the sad- 
dle poinLzO 

In evaluating the integral in Eq. (7) when V,” is ob- 
tained from Eq. (8b), we first fit V,” to a cubic spline; then 
the classical turning points are located analytically. The cal- 
culations are converged with respect to the spline node spac- 
ing so this does not affect the results but it is convenient 
numerically. We found that a spacing of 0.005 a, is adequate 
for convergence. The integrals in Eqs. (4) and (7) were 
evaluated using Kronrod’s quadrature method” which 
yields both N-point and (2N + 1 )-point integrations at the 
cost of (2N + 1) function evaluations. Comparing the re- 
sults from the N-point and (2N + 1 )-point quadratures 
gives a good check on the convergence of the integral evalua- 
tions. We found that k G( T) is converged to better than 
0.5% for temperatures greater than or equal to 200 K if we 
use 6 1. points for the (2N -I- 1 )-point quadrature. In evaluat- 
ing the adiabatic curves, when any interpplated frequency 
takes an imaginary value, its contribution to the zero-point 
energy is set to zero. (This is the standard computational 
procedure for this case in the POLYRATE program.” ) No 
further change was required to evamate the free-energy 
curve because the variational transition state never appears 
in the region where any frequency becomes imaginary. 

111.8. Test problems 

For test cases, we consider OH-+ H, + H, 0 + H, 
CH, +H, -+C!H, + H, and some isotopically substituted 
analogs. Analytical potential-energy surfaces”3,24 are avail- 
able for both systems, and they have been used5(a)*24*25 for 
VTST calculations previously. In particular, for OH + H, 
we use the Walch-Dunning-Schatz-Elgersmaz3 potential, 
which is a fit to ab initio calculations, and for CH, + H, we 
use a partly ab initio, partly empirical potential, called J2.24 
The energies, geometries, and vibrational frequencies of the 
reactant, saddle point, product, and generalized transition 
states at s = f 0.01 a, are calculated from the analytical 
PEFs and are used as input to the present interpolation 
models. In all eight test cases presented in the next section we 
took sr positive and s2 negative. The interpolated VTST rate 
constants are then compared with calculations without in- 
terpolation with the same analytical PEFs as carried out us- 
ing the POLYRATE program.” For consistency with the in- 
terpolated VTST calculations, since our goal is to test the 
interpolation procedures, we treat all vibrations as harmonic 
in the noninterpolated calculations as well as the interpolat- 
ed VTST ones. 
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TABLE I. Rate constants (cm’ molecule- ’ s- ‘) for OH + H, + H, 0 + H. 

T(K) 
200 300 600 1500 

No interpolation ( POLYRATE) 
# 2.1( - 17)" 
z/w 1.3( - 16) 
CVT 1.0( - 17) 
CVT/ZCT 4.9( - 16) 
CVT/SCT 6.9( - 15) 

1.9( - 15) 1.8( - 13) 6.4( - 12) 
6.0( - 15) 2.8( - 13) 7.0( - 12) 
1.2(.- 15) -- 1.6( - 13) 6.3( - 12) 
5.3( - 15) 2.2( - 13) 6.3( - 12) 
2.4( - 14), 3;4( - 13) 6.8( - 12) 

Zero-order interpolation 
# /ZCT-O 6.9( - 16) 7.4( - 15) 2.5( - 13) 6.7( - 12) 

First-order local interpolation 
CVT-IL l.l( - 17) 
CVT/ZCT-IL 7.9( - 16) 
CVT/SCT- 1 L l.O( - 14) 

Fist-order global interpolation 
CVT-1G 1.4( - 17) 
CVT/ZCT- 1 G 4.1( - 15) 
CVT/SCT-1G 4.5( - 14) 

Second-order global interpolation 
CVT-2G l.O( - 17) 
CVT/ZCT-2G l.O( - 15) 
CVT/SCT-2G 1.4( - 14) 

a Power of 10 in parentheses. 

1.3( - 15) 1.6( - 13) 6.2(~: 12) 
6.9( - 15) 2.3( - 13) 6.6( - 12) 
3.6( - 14) 4.1( - 13) 7.3( - 12) 

1.5( - 15) 1.7( - 13) 6.3( - 12) 
1.7( - 14) 3.0(- 13) 6.9( - 12) 
l.O( - 13) 6.0( - 13) 7.9( -12) 

1.2( - 15) 1.6( - 13) 6.2( - 12) 
7.5(--15) 2.4( - 13) 6.6( - 12) 
4.1( - 14) 4.1( - 13) 7.3( - 12) 

The VTST and interpolated VTST results for the test Although we have described the second-order local 
cases are listed in Tables I-VIII, which give results for method (-2L) in Sec. II B 4, we have not included its results 
OH+H,, OHfD,, OH+HD+H,O+D, OH+HD in Tables I-VIII because this method turns out to be unsta- 
-HOD + H, CH, + H,, CH, + D,, CH, + HD-+CH, ble in most of our test cases. In such cases, the sum of the 
+D,andCH, +HD-+CH,D+H. interpolated zero-point energies of bound modes increases at 

TABLE II. Rate constants (cm’ molecule-’ s- ‘) for OH + Q -+HGD + D. 

T(K) 
200 300 600 1500 

No interpolation (POLYRATE) 
# 3.8( - 18)" 
z/w 1.4( - 17) 
CVT 2.9(-18) 
CVT/ZCT 2.9( - 17) 
CVT/SCT 2.9( - 16) 

Zero-order interpolation 
# /ZCT-0 3.7( - 17) 

4.6( - 16) 7.1( - 14) 3.8( - 12) 
1.01 - 15) 9.2( - 14) 4.0( - 12) 
4.0( - 16) 6.81-14) 3.8( - 12) 
9.3( - 16) 8.1( - 14) 3.9( - 12) 
2.8( - 15) 1.1( -13) 4.0( - 12) 

1.1( - 15) 8.6( - 14) 4.0( - 12) 

First-order local interpolation 
CVT-IL 3.1( - 18) 
CVT/ZCT- 1 L 5.0(-17) . 
CVT/SCT-1L 6.1( - 16) 

4.1( - 16) 6.8( - 14) 3.8( - 12) 
1.2( - 15) 8.7( - 14) 4.0( r- 12) 
4.6( - 15) 1.3( - 13) 4.2(-12) 

First-order global interpolation 
CVT-1G 3.2( - 18) 
CVT/ZCT-1G 8.5( - 17) 
CVT/SCT-1G l.O( - 15) 

4.2(- 16) 6.9( - 14) 3.8( - 12) 
1.5( - 15) 9.2( - 14) 4.0( 2 12) 
6.2( - 15) 1.4( - 13) 4.3( - 12) 

Second-order global interpolation 
CVT-2G 2.9( - 18) 
CVT/ZCT-2G 3.5( - 17) 
CVT/SCT-2G 3.2( - 16) 

3.9( - 16) 6.8( - 14) 3.8( -- 12) _. . 
l.O( - 15) 8.4( - 14) 3.9( - 12) 
3.1( - 15) l.l( - 13) 4.1( - 12) 

’ Power of 10 in parentheses. 
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TABLEIII. Rateconstants (cm’molecule-’ s-‘) for OH + HD-H,O + D. 

T(K) 
200 300 600 1500 

No interpolation (POLYRATE) 
f 9.2( - 18)” 
$;/W 5.5( - 17) 
CVT 5.4( - 18) 
CVT/ZCT 1.4( -- 16) 
CVT/SCT 2.3( - 15) 

7.8( - 16) 7.6( - 14) 3.0( - 12) 
2.5( - 15) 1.2( - 13) 3.2( - 12) 
5.7( - 16) 7.0( - 14) 2.9( - 12) 
2.0( .- 15) 8.9( - 14) 2.9( - 12) 
9.5( - 15) 1.4( - 13) 3.2( - 12) 

Zero-order interpolation 
f/ZCT-O 2.8( - 16) 

First-order local interpolation 
CVT-1L 7.4( - 18) 
CVT/ZCT-1L 7.2( - 16) 
CVT/SCT-1L 1.2( - 14) 

Fit-order global interpolation 
CVT-1G 7.6( -~- :l8) 
CVT/ZCT- 1 G 9.1( - 16) 
CVT/SCT-1G 1.2( - 14) 

Second-order global interpolation- 
CVT-2G 5.3( - 18) 
CVT/ZCT-2G 1.6( - 16) 
CVT/SCT3G 2.3( -. 15) 

“Power of 10 in parentheses. 

3.0( - 15) l.O( - 13) 3.1( - 12) 

6.8( - 16) 7.3( - 14) 2.9( - 12) 
4.5( - 15) l.l(-- 13) 3.1( - 12) 
3.0( L- 14) 2.2( - 13) 3.6( - 12) 

6.9( - 16) 7.4( -- 14) 2.9( - 12) 
5.1( L 15) 1.2( - 13) 3.1( - 12) 
3.2( - 14) 2.3( - 13) 3.6( - 12) 

5.6( - 16) 6.9( - 14) 2.9( - 12) 
z.oc- 15) 9.2( - 14) 3.0( - 12) 
9.9( - 15) 1.5( - 13) 3.3( - 12) 

a faster rate than the potential energy decreases along the 
reaction path. Nevertheless, we believe it will be useful to 
reconsider this method for some other systems, and that is 
the reason why we have given the algorithm above. 

11/B. 1. Rate cons tan ts without tunneling 

First, we consider the full and interpolated CVT results. 
CVT corrects conventional transition-state theory for trajec- 

TABLE IV. Rate constants (cm3 molecule-’ s- ‘) for OH + DH-HOD + H. 

T(K) 
200 300 600 1500 

No interpolation (POLYRATE) 
+ 2.8( - 18) 
J(/w l.O( -’ 17) 
CVT 1.7( - 18) 
CVT/ZCT 2.3( - 17) 
CVT/SCT 1.7( - 16) 

3.3( - 16) 4.5( - 14) 2.1( - 12) 
7.2( - 16) 5.9( - 14) 2.2( - 12) 
2.4( - 16) 4.1( - 14) 2.1( - 12) 
6.5( - 16) 5.1( - 14) 2.1( - 12) 
1.6( - 15) 6.3( - 14) 2.1( - 12) 

Zero-order interpolation 
+‘zcT-0 6.8( - 17) l.l( - 15) 5.9( - 14) 2.2( - 12) 

Fit-order local interpolation 
CVT-1L 1.6( -- 18) 
CVT/ZCT-1L 1.8( - 17) 
CVT/SCT-IL 1.3( -- 16) 

2.3( - 16) 4.0( - 14) 2.0( -- 12) 
5.8( - 16) 5.0( - 14) 2.1( - 12) 
1.67 - 15) 6.5( - 14) 2.2( - 12) 

Fiit-order global interpolation 
CVT-1G 1.9( - 18) 
CVT/ZCT- 1 G 6.2( -- 17) 
CVT/SCT-1G 5.1( -- 16) 

2.6i - 16) 4.2( - 14) 2.1( - 12) 
l.O( - 15) 5.7( - 14) 2.2( - 12) 
3,3( - 15) 8.0( - 14) 2.3( - 12) 

Second-order global interpolation i 
CVT-2G 1.7( -- 18) 
CVT/ZCT-2G 3.1( -- 17) 
CVT/SCT-2G 2.2( -- 16) 

2.4( -. 16) 4.1( - 14) 2.1’( - 12) 
7.4( - 16) 5.3( - 14) 2.1( - 12) 
2.1( - 15) 6.9( - 14) 2.2( - 12) 

J. Chem. Phys., Vol. 05;No. 12,15 December 1001 



8884 Gonzalez-Lafont,Truong,and Truhlar: Variational transition-state prope&s 

TABLE V. Rate constants (cm3 molecule-’ s-l) for CH, + H, -+CH, f H. 

T(K) 
200 30x 600 1500 

No interpolation ( POLYFCATE) 

f/w 
4.6( - 24)” 
1.4( - 23) 

CVT 3.3( - 24) 
CVT/ZCT 1.6( - 23) 
‘XT/XT 1.6( - 22) 

Zero-order interpolation 
#/ZcT-o 8.8(- 23) 

First-order local interpolation 
CVT-1L 3.7( - 24) 
CVT/ZCT-IL 5.7( -23) 
CVT/SCT- 1 L 2.8( - 21) 

First-order global interpolation 
CVT-1G 4.2( - 24) 
CVT/ZCT-1G 1.5( - 21) 
CVT/SCT-IG 1.9( - 19) 

CVT-1GP 4.1( - 24) 
CVT/ZCT- 1 GP 8.5( - 22) 
CVT/SCT-2GP 1.11 - 19) 

Second-order global interpolation 
CVT-2G 3.9( - 24) 
CVT/ZCT-2G 6.4( - 23) 
CVT/SCT-2G 6.9( -21) 

CVT-2GP 
CVT/ZCT-2GP 
CVT/SCT-2GP 

3.7( - 24) 
5.7( -23) 
3.2( - 21) 

4.7(‘-20) 4.5( - 16) 
8.9( - 20) 5.5( - 16) 
3.9( - 20) 4.3( - 16) 
7.3(-20) 4.9( - 16) 
1.8( - 19) 6.0( - 16) 

1.3( - 19) 5.6(- 16) 

4.27 -20) 4.4( - 16) 
l.l( - 19) 5.4( - 16) 
6.8( - 19) 8.7( - 16) 

4.5(-20) 4.5( - 16) 
4.2( -19) 7.2( - 16) 
7.8(-- 18) 1.9( - 15) 

2.3( ; 13) 
2.5( - 13) 
3.0( - 13) 

4.5( - 20) 4.4( - 16) 2.3( - 13) 
3.0( - 19) 6.7( - 16) 2.5( - 13) 
5.0( - 18) 1.6( - 15) 2.9( - 13) 

4.3( - 20) 4.4( - 16) 
9.3( - 20) 5.1( - 16) 
7.4( - 19) 7.9( - 16) 

4.2( -20) 4.4( - 16) 
1.1( - 19) -5.5( - 16) 
6.81 - 19) 8.8( - 16) 

2.3( - 13) 
2.4( - 13) 
2.3( -13) 
2.3(- 13) 
2.3( - 13) 

2.4( - 13) 

2.3( - 13) 
2.4( - 13) 
2.6( - 13) 

2.3( - 13) 
2.4( - 13) 
2.5(- 13) 

2.3( - 13) 
2.4( - 13) 
2.6( - 13) 

’ Power of 10 in parentheses. 

tories that recross the saddle point with classical reaction 
coordinate motion and quantized vibrations; but it does not 
correct for tunneling. In all test runs, the first-order local 
CVT results (CVT- 1L) give a good indication of the magni- 
tude of the variational effect, i.e., of the difference of CVT 
from conventional transition-state theory. The interpolated 
results agree very well with the full calculations in all eight 
cases at high temperature and in seven of the eight cases at 
200 K. In the other case the variational correction is only 
about half as large as the uninterpolated calculation. We 
conclude that the first-order local model can usually be used 
to estimate the size of the variational effect with much less 
effort than a full calculation of the Hessian along the whole 

* portion of the reaction coordinate that affects the noninter- 
polated calculation. 

We want to insert a caution: finding that k cvTmlL is close 
to k f does not guarantee that the variational effect is small. 
For example, V:(s) may have two maxima, and only the 
lower barrier may be within the locally interpolated region. 
Then the higher one, which may be the true dynamical bot- 
tleneck, could be missed. This possibility should always be 
kept in mind in future work, although it does not cause prob- 
lems in the test cases considered here. This limitation of the 
present local models can be overcome to some extent in the 

first-order global model (CVT-1G) because it has physical 
asymptotes for the generalized vibrational frequencies, 
wi (s); thus, it has a much larger region of validity. For ex- 
ample, the V:(s) curves for the cases CH, + D, (Table VI) 
and CH, + HD-+CH, + D (Table VII) have a second 
higher maximum farther from the saddle point; Fig. 1 (a) 
shows an example. Although the second maximum calculat- 
ed from the first-order global model is somewhat higher than 
the maximum of the noninterpolated P’,G curves, the results 
indicate that the first-order global model can treat systems 
with two local maxima-at least qualitatively. 

Although the 1G method should be better than the 1L 
method for difficult cases, it is not always better when vari- 
ational effects are small, as seen in the tables. The worst case 
for the CVT-1G calculation is the reaction CH, + H,. 
Figure 2 shows the interpolated frequencies as a function of 
the reaction coordinate s for this case, and it compares the 
1G results to the ones obtained from full (uninterpolated) 
calculations. The qualitative trends at the 1G level are clear- 
ly correct but the quantitative consequences of the differ- 
ences for rate constants are apparent in Table V. Although 
the interpolated 1 G adiabatic curve has a maximum of 11.7 
kcal/mol at s = - 0.03 a,, which is very close to the unin- 
terpolated maximum of 11.8 kcal/mol at s = - 0.09 a,, 
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TABLE VI. Rate constants (cm3 molecule _ ’ s- ‘) for CH, + D, + DCH, + D. 

200 

No interpolation (POLYRATE) 
+ 110( - 24.)* 
z/w 2.2( - 24) 
CVT l.O( - 24) 
CVT/ZCT 2.6( - 24) 
CVT/SCT 1.2( - 23) 

Zero-order interpolation 
jWZCT-0 4.4( - 24) 

First-order local interpolation 
CVT-IL l.O( - 24) 
CVT/ZCT- 1 L 4.1( - 24) 
CVT/SCT-1L 6.7( - 23) 

First-order global interpolation 
CVT-1G 6.6( - 25) 
CVT/ZCT-1G 3.5( - 24) 
CVT/SCT-1G l.O( - 22) 

T(K) 
300 600 .1500. 

_~ 

1.3( - 20) 1.8( - 16) 1.4( - 13) 
2.0( - 20) 2.0( - 16) 1.4( - 13) 
1.3( - 20) 1.8( - 16) 1.4( - 13) 
1.9( - 20) 1.9( - 16) 1.4( -13) 
3.6( - 20). 2.3( - 16) 1.4( - 13) 

2.3( - 20) 2.0( - 16). 1.4( - 13) 

1.3( - 20) 1.8( - 16) 1.4( - 13) 
2.2( - 20) 2.0( - 16) 1.4( - 13) 
7.4( - 20) 2.7( - 16) 1.5( - 13) 

9.6( - 21) 1.4( - 16) l.l( - 13) 
1.8( - 20) 1.6( - 16) l.l( - 13) 
7.0( - 20) 2.3( - 16) l.l( - 13) 

CVT-1GP l.O( - 24) 
CVT/ZCT- 1GP 7.7( - 24) 
CVT/SCT- 1 GP 4.2( - 22) 

Second-order global interpolation 
CVT- & 2G 4.4( - 25) 
CVT/ZCT-2G 5.7( - 24) 
CVT/SCT-2G 3.8( - 22) 

1.3( - 20) 1.8( - 16) 1.4( - 13) 
2.7( - 20) 2.1( - 16). 1.4( ,- 13) 
1.5( - 19) 3.2( - 16) 1.5( - 13) 

7.4( - 21) 1.3( - 16) l.l( - 13) 
1.9( - 20) 1.6( A 16) l.l( - 13) 
1.2( - 19) 2.5( - 16) 1.2( - 13) 

CVT-2GP l.O( - 24) 
CVT/ZCT-2GP 2.8( - 24) 
CVT/SCT-2GP 4.2( - 23) 

“Power of 10 in parentheses. 

1.3( - 20) 1.8( - 16) 1.4( - 13) 
1.9( - 20) 1.9( - 16) 1.4( - 13) 
5.3( - 20) 2.4( - 16) 1.4( - 13) 

that difference represents a factor of 1.3 in k CVT at 200 K, 
and it accounts for the error in the variational effect. 

Tables I-VIII show that the second-order global model 
(CVT-2G) improves the evaluation of the variational effect 
as compared to” the first-order global method. Detailed 
examination of intermediate results shows.that the improve- 
ment afforded by the second-order algorithm is a direct rel 
suit of improvements in predicting the frequencies aud vi- 
brationally adiabatic potential curves. For example, Fig. 
2(c) shows the second-order global frequencies for 
CH3 + H, . We can easily observe the improvement as com- 
pared to Fig. 2(b). An example of the improvement possible 
in Y:(s) in the vicinity of its maximum is shown in Fig. 3, 
for the reaction OH + HD -+ H, 0 + D, and this accounts 
for the considerable quantitative improvement of the CVT- 
2G results over the CVT-1G ones in Table III. For the 
OH + H, reaction the interpolated frequencies from the 
two algorithms are very similar in the vicinity of the vari- 
ational transition state; however, we have just seen that the 

-kCVT rate constants improve quantitatively &ng the 
second-order globsil method, and the global shapes of some 
frequencies improve significantly in going from the first-or- 
der global to the second-order global model, which is also 
encouraging. 

It is instructive to consider the CH, + D, (Table VI) 
and CH, + HD + CH, + D [Table VII) test problems in 
more detail since in these cases the second-order global 
method does not improve upon the first-order global meth- 
od.’ The V:(s) curve obtained by 2G method has a second 
higher maximum farther from the saddle point, and that 
maximum is higher in energy than the one obtained in the 
first-order global method (see Fig. 1). The difficulty ,of ap- 
plying interpolated VTST procedures to those systems 
comes from the fact that there are several avoided crossings 
of the frequencies around the variational transition-state re- 
gion. Interpolated VTST cannot handle such cases very well. 
We find th& in those cases, the first-order local model works 
better for k CVT. .To improve on the accuracy of the global 
interpolations we next take advantage of the fact that by 
using the symmetry or diabatic character of the eigenvectors 
of the different vibrational motions, one can establish phys- 
ical correlations between the modes at reactants, saddle 
point, and products. 15(b)z4(b) Since the major variational 
effect on the rate constant would ordinarily be expected to 
arise principally from the mode or modes that vary most 
rapidly around the saddle-point region, one can improve the 
results by interpolating these with this extra knowledge, and 
this is the motivation for the IGP and 2GP calculations. An 
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TABLE VII. Rate constants (cm’ molecule-’ s- ‘) for CH, + HD-+CH, + D. 

T(K) 
200 300 600 15cil 

No interpolation ( POLYRATE) 
f 1.7( - 24)” 
f/W 5.1( - 24) 
CVT 1.6( - 24) 
CVT/ZCG 4.3( - 24) 
CVT/SCG 3.3( - 23) 

Zero-order interpolation 
# /ZCT-0 2.7( - 23) 

First-order local interpolation 
CVT-IL 1.7( - 24) 
CVT/ZCG- 1 L 3.4( - 23) 
CVT/SCG- 1 L 4.0( - 21) 

Fir&-order global interpolation 
CVT-1G 5.7( - 25) 
CVT/ZCG-1G 3.7( - 23) 
CVT/SCG- 1 G 5.5( - 21) 

CVT-IGP 1.7( - 24) 
CVT/ZCG-1GP 1.6( - 22) 
CVT/SCG- 1 GP 3.8( : 20) 

Second-order global interpolation 
CVT-2G 2.4( - 25) 
CVT/ZCG-2G 8.4( - 24) 
CVT/SCG-2G 1.3( - 21) 

CVT-2GP 1.6( - 24) 
CVT/ZCG-2GP 2.0( - 22) 
CVT/SCG-2GP 4.2( - 20) 

1.7( - 20) 
3.3( - 20) 
1.7( - 20) 
2.5( - 20) 
6.4( = 20) 

4.6( - 20) 

1.7( - 20) 
5.0( z- 20) 
5.9( - 19) 

8.3( - 21) 
3.7( - 20) 
6.1( - 19) 

1.7( - 20) 
8.6( -- 20) 
2.1( - 18) 

4.8( - 21) 
1.7( - 20) 
2.2( - 19) 

1.7( - 20) 
9.3( - 20) 
2.5( - 18) 

1.8( - 16j 
2.2( - 16) 
1.8( - 16) 
1.9( - 16) 
2.4( - 16) 

2.2( - 16) 

1.8( - 16) 
2.2( - 16) 
4.5( - 16) 

l.l( - 16) 
1.6( - 16) 
3.6( - 16) 

1.8( - 16) 
2.5( - 16) 
6.9( - 16) 

9.1( - 17) 
1.2(.- 16) 
2.4( - 16) 

1.7( - 16) 
2.5( - 16) 
7.5( - 16) 

l.O( - 13) 
l.O( - 13) 
l.O( - 13) 
l.O( - 13) 
l.l( - 13) 

l.l( - 13) 

l.O( - 13) 
l.l( - 13) 
1.2( - 13) 

7.2( - 14) 
7.6( - 14) 
8.7( - 14) 

l.O( - 13) 
l.l( - 13) 
1.3( - 13) 

6.5( - 14) 
6.8( - 14) 
7.7( - 14) 

l.O( - 13) 
l.l( - 13) 
1.3( - 13) 

“Power of 10 in parentheses. 

example of an interpolation of the frequencies in which the 
asymptotic frequencies are reordered prior to the interpola- 
tion is given in Fig. 2 (d); this calculation is labeled 2GP as 
explained at the end of Sec. II B 5. In this and all other appli- 
cations of the 1GP and 2GP methods to this reaction we 
permute the reactant and product frequency ordering based 
on the mode correlations of Ref. 24(b). Taking into account 
these correlations in the interpolating procedure, the vari- 
ational effect obtained is quantitatively improved for all four 
isotopic analogs of the CH, + H, reaction. Figure 1 com- 
pares the 2G and 2GP adiabatic curves for the CH, + D, 
reaction. The second maximum of the adiabatic curve for 
reaction CH, + D, disappears when the physical mode 
character is used to order the asymptotic limits for the inter- 
polated frequencies, and the agreement with the uninterpo- 
lated results is greatly improved. The variational effect is 
then essentially exactly reproduced. 

Our goal is not just to obtain good results for the present 
test reactions, but rather to develop a general algorithm that 
can be applied systematically even to low-symmetry cases 
with complicated mode couplings and vibrational frequency 
crossings. This is why we have emphasized the results that 

do not use diabatic mode correlations. When, however, we 
treat reactions for which the physical mode correlations can 
be worked out, permuting the reactant and/or product fre- 
quencies to make the correct physical correlations of the 
modes prior to interpolation can greatly improve the accura- 
cy in specific cases. In order to allow the reader to see more 
completely the improvement obtainable this way we include 
a full set of 1GP and 2GP results in Tables V-VIII. At the 
CVT level, the 2GP results are very good in all cases. The 
Cl + CH, reaction treated later in this paper provides an- 
other example of a high-symmetry case where the first-order 
and second-order global methods with permuted asymptotic 
frequencies may be used profitably. 

In summary, the interpolation methods are on the 
whole quite successful when applied to carry out variational 
transition-state theory calculations without tunneling. In 
most cases the inclusion of data from one additional point, 
plus reactants, products, and saddle point, allows for signifi- 
cant improvement over conventional transition-state theory, 
and the inclusion of data from a second additional point 
allows for very good quantitative CVT calculations in six 
tests out of eight, even without using knowledge of the mode 
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TABLE VIII. Rate constants ( crn3 molecule ’ s - ’ ) for CH, + DH -+ DCH, + H. 

T(K) 
200 300 600 1500 

No interpolation (POLYRATE) 

f/w 
9.5( - 25)= 
2.0( - 24.) 

CVT 8.1( - 25) 
CVT/ZCT 2.5( - 24.) 
CVT/SCT 8.5( - 24) 

Zero-order interpolation 
#/ZCT-O 4.3( - 24) 

l.l( - 20) 1.2( - 16) 7.8( - 14) 
1.6( - 20) 1.4( - 16) 7.9( - 14) 
9.8( - 21) 1.2( - 16) 7.8( - 14) 
1.5( - 20) 1.3( - 16) 7.6( - 14) 
2.4( - 20) 1.4( - 16) 7.7( - 14) 

1.9( - 20) 1.4( - 16) 7.9( - 14) 

8887 

Fit-order local interpolation 
CVT-IL 8.0( - 25) 
CVT/ZCT-1L 3.0( - 24) 
CVT/SCT-IL 1.8( - 23) _ 

First-order global interpolation 
CVT-1G 8.5( - 25) 
CVT/ZCT-1G 1.6( - 23) 
CVT/SCT-1G 3.4( - 22) 

9.7( - 21) 1.2( - 16) 7.8( - 14) 
1.6( - 20) 1.3( - 16) 7.9( - 14) 
3.3( - 20) 1.6( - 16) 8.1( - 14) 

1.01 - 20) 1.2( - 16) 7.7( - 14) 
2.9( - 20) 1.5( - 16) 8.0( - 14) 
l.l( - 19) 2.1( - 16) 8.4( - 14) 

CVT- 1GP 8.3( - 25) 
CVT/ZCT-1GP l.l( - 23) 
CVT/SCT-IGP 2.2( - 22) 

Second-order global interpolation 
CVT-2G 8.5( - 25) 
CVT/ZCT-2G 5.6( - 2.4) 
CVT/SCT-2G 5.1( - 23) 

CVT-2GP 8.4( - 25) 
CVT/ZCT-2GP 5.9( - 24) 
CVT/SCT-2GP 5.9( - 23) 

a Power of 10 in parentheses. 

l.O( - 20) 1.2( - 16) 7.7( - 14) 
2.5( - 20) 1.5( - 16) 8.0( - 14) 
8.8( - 20) 2.0( - 16) 8.3( - 14) 

l.O( - 20) 1.2( - 16) 7.7( - 14) 
2.1( - 20) 1.4( - 16) 8.0( - 14) 
5.2( - 20) 1.8( - 16) 8.3( - 14) 

l.O( - 20) 1.2( - 16) 7.7( - 14) 
2.1( - 20) 1.4( - 16) 8.0( - 14) 
5.2( - 20) 1.8( - 16) 8.3( - 14) 

characters to permute the asymptotic frequencies. When 
permuted asymptotes are used in interpolating frequencies 
we obtain very good results in all eight cases. 

lll.B.2. Inclusion of tunneling 

We discuss next the results obtained when we include 
the tunneling effect. Tables I-VIII show results obtained by 
the Wigne? tunneling correction of order +i’, but only for 
completeness. This method, although convenient in that it 
requires only the imaginary normal-mode frequency at the 
saddle point, is not expected to be accurate except for very 
small tunneling corrections in cases where the zero-point 
energy is almost constant near the saddle point or by acci- 
dent, because it does not reflect enough of the physics. 

Consider first the zero-curvature tunneling calcula- 
tions. Comparing the values of k CVT/Z~-lL and k CVT’ZCT-‘G 
for the different reactions with the noninterpolated rate con- 
stants at the same CVT/ZCT level, we observe for the 
CH, -I- H, case that, while the first-order local method gives 
good estimates of the ZCT tunneling, the first-order global 
model fails completely. Th.e tunneling effect is very sensitive 
to the inadequacies, already mentioned, of some interpolated 
frequencies. The errors in the first-order global methods 
sometimes (e.g., CH, + D, ) come mainly from fitting the 

V MEP curve. In fact, the first-order local method generally 
works better than the fir&order global method for ZCT cal- 
culations. The second-order local method, for which we do 
not present detailed results here, also produces more ac- 
curate ZCT transmission coefficients than the first-order 
global model-except where it fails completely. These fail- 
ures and the poor performance of the first-order global 
model for ZCT transmission coefficients were an important 
motivation for the development of a stable second-order glo- 
bal model which, as discussed in the next paragraph, is in- 
deed successful for CVT/ZCT rate constants as well as for 
the CVT ones discussed above. 

For those cases where the second-order global method 
improves the kCVT rate constant, it also improves the 
kCVT’ZCT rate constant. We observe, for instance, that the 
2G method does better than the 1L and 1G methods over the 
whole range of temperatures for reactions OH + D, and 
OH + HD-+H,O + D. The deviations in the ZCT trans- 
mission coefficients are only factors of 1.2 and 1.1 at 200 K, 
respectively. For the OH + H,, OH + HD-HOD + H, 
CH, + H,, and CH, + HD-+CH, D + H reactions, al- 
though the 1L method still does better at low temperatures, 
there is significant improvement over the 1G method. For 
the CH, + H, and CH, + HD -f CH, D + H reactions the 
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-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 
s (bohr) s (bohr) 

FIG. 1. (a) Vibrationally adiabatic ground-state potential-energy curves 
Y:(s) as functions of reaction coordinate for the CH, + D, reaction as 
obtained by the first-order and second-order global interpolafion algo- 
rithms. Legend: -.-.- denotes first-order global, and -. .- denotes second- 
order global. (b) Same except- denotes the uninterpolated curve, and -s-e- 
and -. .- denote, respectively, first-order and second-order global interpola- 
tion using permuted reactant and product frequencies. 

ZCT transmission coefficient is exaggerated by a factor of 
3.4 and 2.2, respectively, at 200 K, but these deviations de- 
crease to 1.1 and 1.3 at 300 K. The use of symmetry to her- 
mute the end point frequencies prior to the interpolating 
procedure decreases the deviation in the ZCT transmission 

5 
- 
5 
E h 

8 
(52 

0 

III, I,,, I,,, I,,, 

-1 .o -0.5 0.0 0.5 1.0 
s (bohr). 

FIG. 3. The full calculation and interpolated curves of 
AI’:(s) [ = V:(s) - Yz(s = - m ) ] plotted vs the reaction coordinates 
for the OH + HD-+H,O + D reaction. The interpolated curves are calcu- 
lated by the first-order and second-order global (1G and 2G) methods, and 
they are compared to the uninterpolated ( U) ones. 

coefficient from a factor of 4.8 to a factor of 1.1 for 
CH, + D, at 200 K. 

Examination of all the CVT/ZCT results in Tables I- 
VIII shows that on the whole the semiclassical interpolated 
VTST models presented here give good estimates of the mag- 
nitude of the ZCT transmission coefficients. It is particularly 
encouraging that conventional transition-state theory with a 
zero-order model for tunneling gives as good estimates of the 

-0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1 .o 
s (bohr) s (bohr) s (bohr) 

1.0 -0.5 0.0 0.5 1.0 
s (bohr) 

PIG. 2. (a) Generalized normal-mode vibrational frequencies from the full (without interpolating) calculation plotted vs the reaction coordinates for the 
CH, + H, reaction. (b) Interpolated generalized normal-mode vibrational frequencies from the first-order global model plotted vs the reaction coordinates 
for the CH, + H, reaction. (c) Same, but for second-order global model. (d) Same as (c) except asymptotic frequencies are permuted prior to interpolation 
(method 2GP). 
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tunneling as the Wigner method26 in all test cases, although 
the zero-order (#/ZCT-0) calculation requires no addi- 
tional input. Furthermore, the zero-order interpolation 
scheme ( #/ZCT-0) presented here does not suffer from the 
theoretical deficiency of the Wigner method, which is a trun- 
cated power series and is never justified when the transmis- 
sion coefficient is large, as often occurs. 

Recall that in CVT/ZCT calculations, the transmission 
coefficients are calculated with tunneling motions restricted 
to follow the minimum-energy path. However, due to the 
curvature of the reaction path, the optimum tunneling paths 
lie on the concave side of the MEP,5*14,27-30 resulting in 
shorter tunneling paths and. consequently larger transmis- 
sion coefficients. Therefore, CVT/ZCT results should be ex- 
pected to underestimate the accurate rate constants for a 
given potential function. We find differences between the 
ZCT and SCT results of up to a factor of 16 for the present 
test cases, with the biggest difference occurring for the 
OH + HD *Hz0 + D reaction of T = 200 K (see Table 
III). It has been pointed out previously3’ that such differ- 
ences are extremely sensitive to reaction-path curvature, so. 
it will be interesting to see if they can be approximated well 
by interpolation procedures. 

The important new quantity that is needed in order to 
calculate the SCT transmission coefficients is p,, (s) . The 
values obtained for the curvature and effective reduced mass 
at the saddle point in the first-order and in the second-order 
methods are presented in Table IX. Recall that in this paper 
the scaling mass p, which affects the numerical values of the 
reaction coordinate, is equated to the reduced mass for rela- 
tive translational motion of the reactants, which is 1.7-3.2 
amu for the test cases. Thus ,uer tends to these values at 
s = f 00, where the reacti’on path is straight, and the devi- 
ation of the peff values in Table IX from these asymptotic 
values is a measure of the effect of reaction-path curvature. 
We present a comparison of the uninterpolated and interpo- 
latedpu,, (s) curves for the unsubstituted reactions in Fig. 4. 
The global shape of the accuratep,tT (s) curve for this case- 
and, in our experience, most other reactions-would be im- 
possible to reproduce with a single-minimum function or 

TABLE IX. Curvature and pcL.e at saddle point. 

Curvature” A4.a b 

Test cases 1G 2G 1G 2G 

OH+H, 3.28 3.30 0.228 0.225 
OH+Dz 3.00 3.02 0.62; 0.619 
OH$HD-H,O+D 3.93 3.98 0.174 0.198 
OH+HD-+HOD+H 2.51 2.51 0.685 0.682 
CH, f H, 3.65 3.10 0.263 0.252 
‘3% + D, 3.31 3.33 0.561 0.556 
C!H,-+-HDdCH,+D 4.52 4.61 0.144 0.134 
CH, +HD+CH,D+H 2.73 2.74 0.855 0.847 
Cl + C?I, 6.90 7.36 0.637 0.532 

a Units of a; ’ . 
bUnits of amu. 

any function with only a few parameters because it shows 
complicated structure, but the interpolation methods do 
providesemiquantitative accuracy in the critical region for 
tunneling, i.e., the region nears = 0. Nevertheless, the SCT 
transmission coefficients based on interpolation do not re- 
produce their uninterpolated analogs as faithfully as the 
ZCT ones reproduce theirs. 

The 2G method agrees with the uninterpolated results 
for k cvT’.scr at 300 K within a factor of 1.7 for reaction 1 and 
with an accuracy of 1.0-1.3 for reactions 2, 3, and 4. If we 
permute the asymptotic frequencies for the four isotopic ver- 
sion of the CH, f H, reaction in accordance with the mode 
correlations of Ref. 24(b), we observe that at 300 K the 2GP 
model provides SCT transmission coefficients with an accu- 
racy of 1.5-3.5 for reactions 5, 6, and 8, with a much larger 
error for reaction 7. In general, looking at all the 200 K and 
300 K CVT/ZCT and CVT/SCT resuits in Tables V-VIII, 
the 2GP results-are better than the 2G Ones in about half the 
cases. 

Quantitative examination.of the details of the SCT cal- 
culations sho.ws that the errors are due primarily to quantita- 
tive differences in peR (s), in regions where its shape is qual- 
itatively correct. Thus there is little alternative to simply 
performing more electronic structure calculations to pin 
down the quantitative behavior better over a wider region of 
s. Tunneling is very sensitive to reaction-path curvature, and 
although we cannot circumvent this depe-ndence, it is useful 
to be aware of the sensitivity of the results to the uncertainty 
in the reaction-path curvature. 

Although the primary purpose of the present study of 
the reactions of OH and CH, with H, is to illustrate and test 
the new procedures, the first two rows of Table X compare to 
experiment.31-33 The table shows that the CVT/ZCG rate 
constants are in reasonable agreement with experiment. For 
CH, + H, there are no directly measured data at tempera- 

0.0 
-1 .o 0.0 

8 (bohr) s (bohr) 

FIG. 4. Effective mass from the full (without interpolating) calculation 
(solid line), first-order global model (-*-.-), and second-order global model 
(-* .-), plotted vs the reaction coordinate. (a) OH + H, reaction. (b) 
CH, + H, reaction. _ 
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TABLE X. Comparison of CVT/ZCT and CVT/SCT rate constants (cm’ molecules ’ s- ‘1 to experiment at 
300 K. 

Reaction CVT/ZCT-2G CVT/SCT-2G- ~- CVT/SCT-2GP Expt. 

OH+H, 7.5( - 15) 4.1( - 14) (same as 2G) 7.0( - 15y 
CH, + H, 9.3( - 20) 7.4( - 19) 6.8( - 19) 1.2( - 20), 

1.2( - 19)” 
Cl + CH, 2.2( - 13) 5.5( - 13)d 9.9( - 14) = l.O( - 13)” 

a DeMore er al. (Ref. 3 1) . 
‘Extrapolation based on Arrhenius fit of Tsang and Hampson (Ref. 32). 
F Extrapolation based on the reverse rate constants of Shaw and JANAF equilibrium constant (Ref. 33). 
d In this case CVT/SCT- IGP appears more reliable than CVT/SCT-2G, and it yields 1. 1 ( - 13). 

tures as low as 300 K, and extrapolations based on the for- 
ward rate do not agree with those based on the reverse rate 
and equilibrium constants. There is also a considerable ex- 
perimental uncertainty as to the curvature of the Arrhenius 
plot3’ The SCT results are not in as good agreement with 
experiment, and-referral to Tables I and V show that this 
correctly reflects a similar trend in the uninterpolated rate 
constants. The discrepancy may be due to inaccuracies of the 
potential surfaces or the tunneling calculations. 

Phenomenological activation energies E, are obtained 
from the calculated rate constants by fitting them to the Arr- 
henius form at a pair of temperatures. As is well known, 
tunneling lowers the-phenomenological E= at low T. Some 
examples are shown in Table XI. Table XI shows that the 
different interpolating methods provide qualitativelysimilar 
indications of the low E,, due to tunneling, even with infor- 

TABLE XI. Activation energies (kcal/mol) for OH + XY -t HOX + Y 
over the 200-300 K temperature range. 

XY=H, XY=D2 XY=DH 

No interpolation (POLYRATE) 
&V 4.5 5.4 

CVT 5.7 
CVT/ZCT 2.8 
CVT/SCT 1.5 

Zero-order interpolation 
f/ZCT-O 2.8 

First-order local interpolation 
CVT-IL 5.7 
CVT/ZCT- 1 L 2.6 
CVT/SCT-IL 1.5 

Fist-order global interpolation 
CVT-1G 5.6 
CVT/ZCT- 1 G 1.7 
CVT/SCT-1G 0.9 

Second-order global interpolation 
CVT-2G 5.7 
CVT/ZCT-2G 2.4 
CVT/SCT-2G 1.3 

5.7 5.7 
5.1 5.1 
5.8 5.9 
4.1 4.0 
2.7 2.7 

4.0 

5.8 5.9 
3.8 4.1 
2.4 2.9 

5.8 5.8 
3.4 3.3 
2.2 2.2 

5.8 5.9 
4.0 3.8 
2.7 2.7 

3.3 

mation about the potential-energy function at only the three 
stationary points plus one or two additional points. This is 
very encouraging for future applications to new systems. An 
example of such an application is presented next. 

MC. Ab inifio predictions for CI+CH, 
The semiclassical IVTST models proposed here should 

be very useful in conjunction with electronic structure calcu- 
lations where the computational effort at each point on the 
reaction path is very extensive. As a first application, we 
have applied these models to estimate the rate constants of 
the reaction Cl + CH, -+ HCl + CH, using our previous ab 
initio results” at the saddle point plus two extra points. Al- 
though this reaction has larger reaction-path curvature than 
those treated in Sec. III, the effect of this curvature may not 
be as directly reflected in the tunneling probabilities as for 
CH, + H, because the reaction is more asymmetric (see 
Table XII, which compares the classical endoergicity AE, 
and zero-point-corrected endoergicity AH: for the noniso- 
topically substituted cases). For significantly asymmetric 
reactions, the largest reaction-path curvature does not occur 
as close to the maximum of V:(s) as it does for symmetric or 
nearly symmetric reactions.34 This, plus the fact that the 
barrier is not very high (the zero-point-corrected forward 
and reverse barriers are- 3.5 and 2.3 kcal/mol, respective- 
ly” ) and that it would be very expensive to calculate a 
global potential surface or even to carry out a full reaction- 
path calculation at the high level of electronic structure the- 
ory applied here, makes this reaction a suitable candidate for 
the application of interpolated VTST methods. 

The ab initio calculations were carried out by the MP- 
SAC2 method3’ (which involves second-order MQller-Ples- 
set perturbation theory36’37 and scaling all correlation ener- 

TABLE XII. Energies of reaction (kcal/mol) . 

Reaction A-G AH; 

OH-t& - 15.2 - 13.6 
CH, + H, -~ 2.8 + 0.02 
Cl + CH, + 6.7 + 1.2 
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gy35 ) with an MC-31 lG(2d,d,p) basis set.” The 
mass-scaled coordinate system was again defined by setting 
the scaling mass ,u equal to the reduced mass for relative 
translational motion of reactants,5 which in this case equals 
10.992 amu. The geometry of the new points were deter- 
mined by taking a step of * 0.01 a,, in the direction of the 
mass-scaled eigenvector corresponding to the saddle-point 
imaginary frequency. (The negative sign denotes the step 
towards reactants and the positive sign the step towards 
products.) The new calculations were carried out using the 
GAUsSmN86 program3’ at San Diego Supercomputer Cen- 
ter, and the geometry and energy at the nonstationary points 
are given in Table XIII. 

As for the CH, + H, reaction, there appear to be 
several crossings or avoided crossings of the wi (s) curves in 
the vicinity of the saddle point. Thus we performed calcula- 
tions by the 1GP and 2GP methods, where we used diabatic 
correlations, as well as by the lL, lG, and 2G algorithms. 
The main difference between the mode correlations in the 
two sets of global interpolation methods is that in the 1GP 
and 2GP calculations the 5712 cm - ’ mode of the saddle point 
is correlated with the C-H stretch of CH, at 32 10 cm- ’ and 
the HCl stretch at 3029 cm - ‘, and the 1227 cm- ’ mode of 
the saddle point is correlated to one component of the 1347 
cm - ’ mode in CH, . 

The resulting rate constants and activation energies are 
listed in Tables X and XIV. The 1GP and 1G results arevery 
similar, but the 2GP and 2G results differ considerably. The 
vibrationally adiabatic ground-state curve obtained in the 
2GP calculation appears to be the most reasonable inter- 
polant, and thus the 2GP rate constants are expected to be 
the most reliable, but the others are shown to illustrate the 
sensitivity to decreasing the number of ab initio calculations 
or interpolating differently. Notice that the 1GP and 2GP 
calculations agree with each other better than do the 1G and 
2G calculations, which is another indication that the diaba- 
tic mode interpolation is more reasonable. The adiabatic 
barrier height A‘C/‘i’ of the 2GP model is 3.79 kcaljmol and 

the vibrationally adiabatic ground-state barrier occurs at 
s”,” = - 0.04 a,, as compared to 3.57 kcal/mol and - 0.02 
a, for the 1GP calculation; this difference largely explains 
why the rate constants are larger in the 1GP calculation. 

Table X shows that rate constant predicted by the inter- 
polated VTST calculations agrees with experiment31’39 
within a factor of 5.5 for the worst model at 300 K, which is 
quite reasonable for a totally ab initio prediction based on 
five points along the reaction path. In fact, it is within the 
accuracy that could reasonably be expected since the energy 
barrier would need to be increased by only 1.0 kcal/mol to 
decrease the Boltzmann factor by a factor of 5.5 at 300 K. 

In Table XV the activation energy is given as a function 
of temperature; values are reported for several two-tempera- 
ture fits to the theoretical results. Each such fit yields the 
effective phenomenological activation energy for the tem- 
perature range encompassed. The interpolated variational 
transition-state theory results including tunneling agree well 
with experimentaP’ data in that they predict an increase in 
E, of about 0.7 kcal/mol at 300-500 K as compared to 200- 
300 K, whereas the experimental increase is 1.0 kcal/mol. 
For this property theory agrees with experiment within the 
reliability of the experiment. 

Temperatures down to about 200 K are important for 
atmospheric chemistry. Since the temperature dependence 
of E, is in such good empirical agreement with experiment, 
we might attempt to draw conclusi&is aboutthe quantitative 
ruie of tunneling gt such temperatur& Compaiing the CVT 
and CVT/SCT calcultitions, we find that tunneling increases 
the rate constant by g factor of 3 or more at 200 K, for all 
methods of interpoltition. Thus we can surely say that the 
reaction is dominate‘dby tunneling at this temperature. 

IV. SUMMARY AND CONCLUDING REMARKS 

In‘the present study, wk proposed a hierarchy of inter- 
polation models for performing variational transition-state 
theory and tunneling calculations of reaction rates, and we 

TABLE XIII. The geometry andilbsolute energy of the nonstationary points on the Cl + CH, reaction path.’ 

H 

a 
4 / 

Cl -- H 
R2 f- 

R3 

c ‘...* 
%, 

\ 
“0, H 
H 

s((lo) R, R2 4 a E 

s, = -0.01 1.445 55 1.370 96 1.086 13 101.39 - 500.127 181 36 
s, = +0.01 1.417 25 1.404 41 1.085 72 100.96 - 500.127 174 95 

‘Bond lengths in I$ bond angles in degrees. 
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TABLE XIV. Rate constants for Cl + CH., -HCl + CH, . 

T(K) 
200 300 600 1500 

#/ZCT-0 

4.0( - 15) 
1.2( - 14) 
2.0( - 14) 

CVT-IL 3.8( - 15) 
CVT/ZCT- 1 L 2.0( - 14) 
CVT/SCT-IL 5.7( - 14) 

9.1( 7 14) 4.1( - 12) 1.6( - 10) 
1.7( - 13) 4.9( - 12) 1.6( - 10) 
1.9( - 13) 4.9( - 12) 1.6( - 10) 

8.8(-- 14) 4.0(- 12) 1.5(~= 10) 
1.9( - 13) 4.8( - 12) 1.6( - ioj 
3.5( - 13) 5.9( - 12) 1.6( - 10) 

CVT-1G 3.8( - 15) 8& - 14) 4.0( - 12) 1.5( - 10) 
CVT/ZCT-1G 6.6( - 15) l.l( -13) 4.2( - 12) 1.5( - 10) 
CVT/SCT-1G 8.5( - 15) 1.3( - 13) 4.4( - 12) 1.5( - 10) 

CVT-1GP 3.81 - 15) 8.7( - 14). 3.7( - 12) - 
CVT/ZCT- 1GP 

1.2( - 10) 
5.21. - 15) .l.O( - 13) I 3.9( - 12). 1.2( - 10) 

CVT/SCT-1GP 6.4( - 15) l.l( - 13). 3.9( - 12) .1.2( - 10) 

CVT-2G 2.4( - 15) 6.4(‘- 14) 3.1( - 12) 1.2( - 10) 
CVT/ZCT-2G 3.5(‘- 14) 2.2( - 13) 4.2(- 12) 1.2( - 10) 
CVT/SCT-2G 1.3( j 13) 5.5( - 13) 6.0( - 12) 1.3( - 10) 

CVT-2GP ” 2.i( - 15) 5.9( - 14) 2.9( - 12) 9.2( --‘I 1) 
CVT/ZCT-2GP 4.2( - 15) 8.11 - 14) 3.1( - 12) 9.3( - 11) 
CVT/SCT-2GP’ 6.2( - 15) 9.9( - 14) 3.3( - 12) 9.4( - 11) 

“Additional temperatures: 9.5( - 14) at 298 K, 4.9( - 13) at 400 K, 1.5( - 12) at 500 K, 2.5( - 11) at 1000 
K. 

-- 

tested how well. vibrational zero-point and entropy effects 
and tunneling probabilities can be est&rated with a mini- 

tion of analytical potential-energy functions is prohibitively 
difficult. Results calculated with the interpolation model are 

mum of electronic structure input. This allows either for the called interpolated variational transition-state theory. The 
electronic structure input to be calculated at a higher level of 
theory than would otherwise be possible or for the inclusion 

models were tested for reactions of OH and CH, with H,, 
D, , and HD and were then applied to the reaction of Cl with 

of variational transition state .and tunneling effects even in 
dynamical calculations for systems for which the construe- 

CH, using a high level of ab initio electronic structure theo- 
ry. 

TABLE XV. Activation energies (kcaI/nibl) for Cl + CH.,‘+HCl + CHz. 

# 
i/w 
jWZCT-0 

CVT-1L 
cvT/zcT- 1L 
cVT/sCT-1L 

CVT-1G 
CVT/ZCT-1G 
CVT/SCT-1G 

CVT-1GP 
CVT/ZCT-1GP 
CVT/SCT-1GP 

CVT-ZG 
CVT/ZCT-2G 
CVT/SCT-2G 

CVT-2GP 
CVT/ZCT-2GP 
CVT/SC!T-2GP 

Experiment” 

“Reference 39. 

‘2W300 

3.7 
3.15 
2.7 

3.7 
2.7 
2.2 

3.7 
3.35 
3.25 

3.7 
3.5 
3.4 

3.9 
2.2 
1.7 

3.9 
3.5 
3.3 

2.6 

Trange (K) 
300-500 500-600 1000-1500 

4.3 5.2 8.9 
3.8 4.8 8.4 
3.6 4.8 8.55 

4.3 5.45 8.7 
3.6 4.9 8.7 
3.15 4.2 8.25 

4.3 5.45 8.7 
4.2 5.0 8.5 
4.0 5.0 8.5 

4.3 5.0 8.25 
4.2 4.95 8.25 
4.1 4.95 8.25 

4.5 5.2 8.45 
3.3 4.4 8.25 
2.6 3.7 7.8 

4.5 5.25 8.25 
4.1 5.2 8.1 
4.0 4.7 7.9 

3.6 
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The goal is to include important dynamical effects in 
rate calculations with a minimal computational effort. This 
allows for the rates of a wide variety of reactions, including 
more complicated organic reactions, * to be treated more re- 
liably. 

The interpolation methods presented here can be used 
very successfully to calculate variational transition-state 
theory rate constants and semiclassical transmission coeffi- 
cients accounting for tunneling along the reaction path. Less 
quantitative but still very useful results are obtained for tun- 
neling calculations that include corner-cutting effects; these 
effects are very sensitive to reaction-path curvature, and it 
requires more electronic structure input to map out their 
complicated character. In future work we intend to develop 
interpolation algorithms for tunneling methods40.4’ suitable 
for treating cases with very I.arge reaction-path curvature. 

Testing the model against noninterpolated calculations 
is considered important because possible deficiencies in the 
approximations may be uncovered this way. The new meth- 
ods work reasonably well in the tests we have performed. We 
hope they will allow the practical application of variational 
transition-state theory and semiclassical tunneling methods 
to new systems with very little electronic structure input. 

We also report an application of the new methods to the 
reaction Cl + CH, --) HCl -I- CH, . The resulting activation 
energies agree very well with experimental data. 

Interpolation techniques may be used to include vari- 
ational and tunneling effects in calculations on complex spe- 
cies with only slightly more cost than is required for conven- 
tional transitional transition-state theory. This approach, 
either as presented here or with further refinement or a high- 
er order of interpolation, should allow useful applications of 
variational transition-state theory to more complicated reac- 
tions than would be possible with full reaction-path calcula- 
tions, or they should allow a higher level of electronic struc- 
ture theory to be applied to a given reaction at a small 
number of points. 
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