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We present a detailed comparison of the efficiency and accuracy of the second- and third-order 
split operator methods, a time dependent modified Cayley method, and the Chebychev 
polynomial expansion method for solving the time dependent Schrodinger equation in the one- 
dimensional double well potential energy function. We also examine the efficiency and 
accuracy of the split operator and modified Cayley methods for the imaginary time 
propagation. 

1. INTRODUCTION 

One approach for calculating the dynamical properties 
of a quantum mechanical system is to solve the time depen- 
dent Schrodinger equation, for which several numerical 
methods exist.les9 It is also possible to calculate directly 
thermally averaged properties of systems; e.g., thermal rate 
coefficients can be calculated by using the solutions of the 
time dependent Schrodinger equation to compute the flux- 
flux correlation function at an appropriate dividing sur- 
face.60*6’ The efficiency of these methods becomes critical 
when one wants to calculate the thermal rate coefficients of 
systems in which a few quantum degrees of freedom interact 
with a large number of classical ones, as in proton transfer in 
proteins. In such cases, we must compute the expectation 
values of various quantum mechanical operators over all 
possible classical configurations.62 Numerically, a large 
number of classical configurations must be used to insure 
small deviations in the averages. This means that for each 
important classical configuration, one needs to carry out a 
quantum calculation for the quantum degrees of freedom, 
and hence the efficiency of this portion of the calculation 
becomes critical. Three particularly promising methods for 
solving the time dependent Schrodinger equation are the 
split ope~atorll~31~43*44*50 (SO), time dependent modified 
Cayley method5’-53 (MC), and Chebychev polynomial ex- 
pansion 15~22~26-30~33~39-42~45-48 (CP) method. Prior to the pres- 
ent study, the split operator method has been used for both 
real time and imaginary time evolution calculations, the 
Chebychev polynomial method has been used for real time, 
and for imaginary time determination of eigenvalues of 
bound systems,” whereas the modified Cayley method has 
been applied to real time propagation problems. Recently, a 

‘) Permanent address: Institute of Physics, N. Copernicus University, 
Grudziadzka 5, 87-100 Torun, Poland. 

b, Ames Laboratory is operated for the U. S. Department ofEnergy by Iowa 
State University under contract No. 2-7405-ENG82. 

comparison study of different propagation schemes, in par- 
ticular, the split operator, Chebychev polynomial expan- 
sion, and iterative Lanczos methods, has been reported63 for 
a one dimensional Morse potential. However, one can expect 
the comparison results may be somewhat different for a dif- 
ferent potential energy function. 

In this study, we present a detailed comparison of the 
efficiency and accuracy of the split operator, modified Cay- 
ley, and Chebychev polynomial expansion methods for solv- 
ing the time dependent Schrodinger equation. We also ex- 
tend the modified Cayley method to propagate the wave 
function in imaginary time and compare it to the split opera- 
tor method. The one dimensional double well potential ener- 
gy function is used in this study, since it is the first step in our 
development of a mixed quantum and classical dynamical 
method for studying quanta1 processes in biological systems 
such as proton transfer in proteins. 

II. METHODOLOGY 

For convenience, atomic units are used in the present 
study. The quanta1 time evolution of the system described by 
the wave function $ is governed by the time dependent 
Schrodinger equation 

i& $(r,O = HWJ), (1) 

where H = K + V, with K and V the kinetic and potential 
operators, respectively. The formal solution to the differen- 
tial equation, with H independent of time, is 

$(r,t+ 7) = e-“‘+b(r,t). (2) 
If H is time dependent, this solution is approximate, and we 
must take 7 small enough that there is effectively no vari- 
ation in H over the time r. The exponential operator 

uze-“’ (3) 
contains two noncommuting operators K and V; therefore, 
they cannot be diagonalized simultaneously. Further, dia- 
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gonalization of H itself requires solution of the full time in- 
dependent Schrodinger equation. Thus, evalutation of U is 
nontrivial. Similarly, in calculating the quantum thermal 
rate constant using the flux-flux correlation method, one 
encounters an imaginary time propagator of the form 

$hr,f”) = -i r’e-‘K(‘.-l)V~(r,t)dt+e-“‘~(r,t’). 

(9) 

u = e-HW2, (4) 

where dfl is a step-size parameter ofp which is l/k, T; k, is 
the Boltzmann constant and T is the temperature. 

Furthermore, the kinetic and potential energy operators are 
separated; hence, they can be evaluated in their respective 
local representations. However, notice that $( r,t ” ) does ap- 
pear in both sides of Eq. (9). By using the trapezoidal rule to 
approximate the integral over t, it can be factored out and 
yields3 

A. Split operator method 
If r is sufficiently small, the evolution operator U can be 

approximated by the split operator method.” There exist 
both second and third order methods. There are, in fact, two 
distinct forms of any approach which is based on splitting 
the Hamiltonian into a reference and disturbance Hamilto- 
nian.52 These are designated as kinetic or potential refer- 
enced. For example, for the second order split operator 
method, one can use either the kinetic referenced expression, 
which we denote as KRSO, which is expressed ass2 

$(rJ”) =(l ++V))‘ePtKT(l -$V)$(r,t’), (10) 

where in this form, we have implicitly taken V to be time 
independent. Thus, the modified Cayley method also re- 
quires two FFT’s per time step. The magnitude of the error 
which depends on r 3 results from the use of the trapezoidal 
rule. The results from this method are referred to as KRMC. 
We also note that there is a potential referenced modified 
Cayleys2 (VRMC) for which we give results. 

U=e- e NT/2 - “Te - NT/2 
(5) 

or the potential referenced expression, denoted as VRS0,52 

U=e- e lKT/Z - “Te - XT/2 (6) 
Both approximations give the error of order r 3. Bandrauk 
and Shen” recently proposed a third order method, denoted 
as VRS03 in this work, which has the error of order 7 4, and 
has the form 

To extend the modified Cayley method to the case of 
imaginary time propagation, one needs to solve the corre- 
sponding imaginary time differential equation 

Following the same derivation as for real time, we obtain 

#(P”) = (1 ++V)-‘e-KdB12(l --$!V)~@lj, 

u = e - iyKd2e - iyVre - i( 1 - y)K~/2~ - i( 1 - 2y)Vr 

x e - i( 1 - y)Kr/le - iyVre - iyKT/2 
, (7) 

where y is l/(2 - 21’3). The power of the split operator 
methods stems from the fact that if we use coordinate and 
momentum representations, we can evaluate the kinetic and 
potential energy operators in their respective local represen- 
tation spaces, then use the fast Fourier transforms (FIT) to 
convert representations from coordinate space to momen- 
tum space, and vice versa. Each FFI requires N log 2N 
operations, where Nis the number of coordinate grid points. 
Thus, for each time step, we must perform 2 FIT’s for the 
second order methods, and 6 FFT’s for the third order one. 
(However, there are methods, other than finite difference 
methods, currently under study which involve performing 
the entire calculation in the coordinate representation.51 ) 

where dfl is the magnitude of the imaginary time step size, 
dfl = B ” - p ’ = fl /L with L the number of imaginary time 
steps. This equation shows how the thermal wave function 
propagates in imaginary time. 

C. Chebychev polynomial expansion 
In this method, the evolution operator U is approximat- 

ed by a Chebychev series as 

u= 2 a,Qm( -iHr), 
ITI= 

Similar procedures can be used to approximate the 
imaginary time operator U in Eq. (4). 

where M is large enough to ensure the convergence of the 
series, a,,, are the expansion coefficients, and <p,,, are com- 
plex Chebychev polynomials. Since the range of the argu- 
ment of these polynomials is from - i to i, one needs to shift 
the Hamiltonian to 

H norm = 
2 H-I(AE/2 + I’m,) 

AE I 

5. Time dependent modified Cayley method 
The time dependent Schrodinger equation can be re- 

written as 

(i$ - K)d(rA = VlC(r,O, (8) 

where Vq( r,t) is treated as an unknown inhomogeneity. We 
note here that V can contain an explicit time dependence. 
Solving the first order differential equation with unknown 
inhomogeneity yields 

where I is the identity operator, and AE = Em,, - Emi, is 
the spectral range of energy of the discretized Hamiltonian 
H. The maximum and minimum of the total energy, Em,, 
and Emi,, respectively, are defined over the grid by 

E max = v,,, + pL 
2m’ 

Emin = Vmin, (15b) 
where m is the mass of the particle, and the maximum mo- 
mentum is expressed in terms of the grid spacing Ax as 

J. Chem. Phys., Vol. 96, No. 3, 1 February 1992 

(11) 

(12) 

( 14) 



P 
P max = - * 

Ax 
(16) 

TABLE I. Potential energy function and parameters for the proton bound 
ammonia dimer [ H, NH + .. .NH, ] (kcal/mol, A). The fitted potential is 
valid for V-c 10 kcal/mol. 

W ith this definition the time evolution operator can be ap- 
proximated as 

U=e - itBE/ + V,,,,,)r 

where a,,, is defined as 

a0 = Jo (a), (18a) 

a, = 2J, (a), for m  = l,M, (18b) 
where J,,, are the cylinder Bessel functions and a = AEr/2. 
This propagation requires the calculation of the effect of the 
operator a,,, on $, and this can be evaluated by using the 
recursion relation 

Q, m+l = --z11,,,cp, +a,-,. (19) 

Note that this method requires 2M FFT’s per time step. The 
maximum order M can be chosen such that accuracy is 
dominated by the accuracy of the computer. In practice, Mis 
often slighty larger than the theoretical limit bE~/2. 

Ill. RESULTS AND DISCUSSION 

We  have carried out extensive testing on these four 
quantum evolution methods. However, due to limited space 
we only present the most important features of this compara- 
tive study, and point out the advantages and disadvantages 
of each in the ongoing development of dynamical methods to 
study quantum processes in biological systems. 

Since our goal is to study proton transfer in proteins, it is 
most informative to use a double well potential to test these 
time evolution methods. In this case, we use the previously 
reported one-dimensional double well potential, V( x;R ), for 
proton transfer in the [H, NH + * * -NH, ] complex.‘j“ The 
functional form and the new and better fitted parameters for 
the potential V(x;R), where x is the distance from the pro- 
ton to the geometrical center, and R is the equilibrium dis- 
tance between two heavy atom centers in this case, are given 
in Table I. This potential has the barrier height of 1.9 1 kcal/ 
mol above the potential minimum, and located at the origin, 
and the two minima are symmetrically located at 
x= *0.44a. (a0 =0.529&. 

A. Real time evolution 
For the real time propagation, the initial wave function 

is a Gaussian wave packet centered at x = - 0.44 a,. The 
average energy at time t = 0 is set at 3.0 kcal/mol which 
yields a Gaussian packet, well localized in the left hand well. 

For the discussion of the efficiency and accuracy of the 
various methods, we have considered several methods of er- 
ror analysis for the norm and the phase of the coordinate 
space wave function and the total energy of the particle (hy- 
drogen atom in this case). The relative average energy error 
( AEE) is defined by 

AEE = E(t=O) -(E) 
E(t=O) ’ 

(20) 

where E( t = 0) is the average total energy at t = 0, and 

v(x;R) = C(R) + B(R)2 + A(RW, 

where 
C(R) =p, +p,R fp,R’ +pdR3, 

B(R) =ps +p,R+p,R2+p,R’, 

A(R) =ps +P,,,R+PI,R~+P~R~. 

Pl 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 
Pro 
PI2 
R 

2 090.232 50 
- 2 094.022 88 

685.471 15 
- 72.752 64 
8 084.935 86 

- 7 147.818 64 
2 061.221 36 

- 196.930 14 
20 700.629 80 

- 16 210.357 90 
- 380.810 30 

2.72 

(E) =fcEi, 
f 1 

with Ej the total energy at the time step i. Here N, is the 
number of steps at which the detailed analysis is carried out. 
In the present study, the analysis is carried out every ten time 
steps, or at time intervals of 107: We  also examine the rms 
deviation of the relative total energy (rms E) which is ex- 
pressed as 

“2 (22) 

Truong eta/: Wave packet evolution methods 2079 

and the rms deviation of the norm (rrns N) given by 

rms N= --j- ,f (1 -ni)2 
l/2 

(23) 
tl 0 I 

where n i is the norm at the step i. To investigate the error in 
the phase of the wave function, we monitor the survival 
probability which is defined as the square of the overlap be- 
tween the final wave function of a  run and the final wave 
function of the reference calculation. The survival probabili- 
ty error is then expressed as 

survival prob. error = 1 - I($(f~)I$~~f(f,-))12. (24) 
The reference wave function is calculated using a very small 
time step of 0.05 fs. 

For the short time propagators, the split operators are 
unitary, therefore the norm is conserved. We  found that the 
rms N for the split operator methods are quite small for the 
time step r up to 1.5 fs. The modified Cayley method on the 
other hand is not automatically unitary, and as a result the 
rms N is much larger. In Fig. 1, we plot the largest of the 
three error measures in the norm and the energy as defined in 
Eqs. (21)-(23) vs the time step for the split operator and 
modified Cayley methods, after propagation for the total 
time of 1 ps. In this case, the grid spacing, AX, is equal to 0.04 
and the total number of points, N, is 256. It is interesting to 
notice that the second order potential referenced split opera- 
tor (VRSO) method is somewhat more stable than the sec- 
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ond order kinetic referenced one (KRSO), though they both 
have the same order of error, theoretically. The third order 
potential referenced split operator (VRS03) method is 
found to have larger stable range up to t = 1 fs. However, 
recall that VRS03 requires 6 FIT per time step whereas the 
second order ones require only 2 FFT per step. We also 
found that the kinetic referenced modified Cayley (KRMC) 
method is somewhat more stable compared to the VRSO 
method, though it also requires only 2 FIT per time step. In 
particular, for a given level of accuracy, e.g., less than 0.1% 
error in the norm and energy, the time step must be less than 
or equal to 0.4 fs for KRSO, 0.5 fs for VRSO, 0.9 fs for 
VRS03, 0.4 fs for VRMC, and 0.6 fs for KRMC method. 
Furthermore, we found that these error measures did not 
change significantly for calculations with the total time of 5 
ps. For the error in the phase, we plotted the survival proba- 
bility errors as functions of time step for calculations with 
the total time of 1 and 5 ps in Figs. 2(a)-2(b), respectively. 
The survival probability errors accumulate over time as seen 
by comparing results from Figs. 2 (a) and 2 (b) . Notice that 
at larger time steps in the 5 ps run, the split operator meth- 
ods, and the potential referenced modified Cayley show 
some oscillatory behavior in the survival probability error 
that is probably due to the periodicity of the phase, and the 
inteference between the phase error accumulated over time 
and the phase. However, we found that the KRMC gives 
more stable results in the phase for a wider range of time 
step. Consequently, among the short time propagators, the 
KRMC method is preferred. And since it has no restriction 
on the form of the Hamiltonian, thus, for the case of time 
dependent potential, the KRMC method would be the meth- 
od of choice among those we consider here for the real time 
evolution. 

It is an interesting and important question to ask why 
the potential referenced split operator is better than the ki- 
netic referenced one whereas the kinetic referenced modified 

z 

z 
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ul 

b 
2 
P 

Ii 
‘5 
2 
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FIG. 1. The largest error (%) 
among the relative average energy 
error, rms deviation of the relative 
total energy, and nns of the norm, 
after the packet is propagated a total 
of 1 ps, plotted vs the time step (fs) 
for the second and third order poten- 
tial referenced split operator (VRSO 
and VRS03, respectively), kinetic 
referenced split operator (KRSO), 
and kinetic and potential referenced 
modified Cayley (KRMC and 
VRMC, respectively) methods. The 
grid spacing, Ax, is 0.04, and N, the 
number of x-grid points is 256. 
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FIG. 2. The survival probability error (%) plotted vs the time step (fs) for 
the second and third order potential referenced split operator (VRSO and 
VRS03, respectively), kinetic referenced split operator (KRSO) , and ki- 
netic and potential referenced modified Cayley (KRMC and VRMC, re- 
spectively) methods. (a) is for the total time of 1 ps and (b) is for the total 
time of 5 ps. The grid spacing, Ax, is 0.04, and N, the number of x-grid 
points is 256. The results for VRSO and KRSO are nearly identical. 
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Cayley method is better than the potential referenced one. 
We have propagated the initial wave function through one 
time step of size 1 fs, and found that the AEE error is 0.13% 
for the KRSO and 0.02% for the VRSO method. This indi- 
cates that there is a fundamental difference in the computa- 
tional accuracy by splitting the kinetic operator in VRSO 
and the potential operator in KRSO. In Figs. 3 and 4, we 
show the real components of the unsplit and split (resulting 
in the square root) forms of the exponential kinetic and po- 
tential operators, respectively, in the SO method. The imagi- 
nary components are found to have similar features. Note 
that there is little difference in the split and unsplit exponen- 
tial potential operator (see Fig. 4) whereas the split expo- 
nential kinetic operator has noticeably fewer oscillations 
compared to the unsplit one (see Fig. 3). Now in the KRSO 
method, the split exponential potential operator occurs as a 
factor twice, leading to an extremely oscillatory behavior. In 
the VRSO method, the unsplit exponential potential opera- 
tor occurs as a factor once, and it is essentially no more 
oscillatory than a single split exponential potential operator. 
We thus expect that it will involve a substantial reduction in 
the oscillations, leading to a more easily and accurately com- 
puted evolution operator. In the case of VRMC, the unsplit 
exponential potential operator occurs as a single factor, mul- 
tiplied by smooth functions ( 1 f zKt /2) * ’ in k space. By 
contrast, the KRMC involves the much less oscillatory un- 

2- 
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FIG. 4. The real components of the exponential unsplit and split potential 
operators, Re [exp( - Nf) ] and Re [exp( - iVt/2)], respectively, are 
plotted vs the coordinate x in atomic units. The time t is 1 fs. 

split exponential kinetic operator, multiplied by smooth 
functions ( 1 f Nt /2) * ’ in x space. As a result, we expect 
the KRMC will involve the least oscillatory quantity, and 
thus lead to the most efficient computational algorithm, as 
was found. 

-2 ' I t I I 
-80 -40 0 40 80 

-trO -40 0 40 80 

k 

FIG. 3. The real components of the exponential unsplit and split kinetic 
operators, Re [exp( - Xt) ] and Re [exp( - Xt /2) 1, respectively, are 
plotted vs the momentum k in atomic units. The time t is 1 fs. 

The Chebychev polynomial expansion method, which is 
a global propagator, has an additional parameter in deter- 
mining the stability of the method, that being the order of the 
polynomial, h4. We therefore discuss this method separately. 
In the present study, the time step used is smaller than 4 fs, 
and the order ofthe Chebychev polynomial M did not exceed 
80. In all test runs we found that the Chebychev method gave 
stable results for grid spacing, AX, between 0.08 to 0.1 a,, 
which is about factor of 2 larger than for the short time prop- 
agators. Consequently, the number of grid points is smaller 
for a given reaction range. Furthermore, it is not monotoni- 
cally dependent on the grid spacing. To illustrate this point, 
in Fig. 5 we plotted the average energy error vs the grid 
spacing for the case of M = 30 and 40, N = 64 points, and 
the total time of 1 ps. Note that for smaller grid spacing, to 
obtain accuracy a higher order of polynomial is needed to 
cover the larger spectral range of the Hamiltonian [see Eqs. 
( 15 ) and ( 16) 1. Thus, in this respect, the Chebychev meth- 
od is complementary to the split operator and modified Cay- 
ley methods in which accuracy can only be obtained using 
their smaller grid spacing. Furthermore, for a given level of 
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FIG. 5. The average energy error (%) plotted vs the grid spacing Ax for the 
Chebychev polynomial expansion method for the order of M = 30 and 40. 
The time step is 1 fs for the total time of 1 ps, and N is 64 in this case. 

accuracy, the Chebychev method can accomodate a larger 
time step providing one uses a higher order polynomial. Fur- 
thermore, we found that the error measures in the norm and 
the phase of the wave function, and the energy are about the 
same order of magnitude. In particular, Fig. 6 shows the 
minimum order of the Chebychev polynomial must be used 
for a given time step that ensures the average energy error is 
less than 0.1%. Note that the time step for the Chebychev 
method can be as large as 3.5 fs which is more than a factor of 
3 larger than can be used by the modified Cayley method. If 
the FFT is the time consuming step, then the Chebychev 
method is much more expensive than the modified Cayley 
method. For instance, if r is 0.5 fs the modified Cayley re- 
quires 2 FFT whereas the Chebychev requires at least 38 
FFT (minimum M equals 19 ) to give the error of less than 
0.1% (see Figs. 1 and 5). However, if the potential is the 
time consuming step, then the Chebychev method might be 
preferable because its grid spacing and time step can be 
much larger, making the potential subroutine calls much less 
frequent. 

3 

70 I- / I 

FIG. 6. The minimum order of the Chebychev polynomial expansion which 
gives the error of less than 0.1% in error measures in the norm and the 
energy plotted vs the time step (fs). 

B. Imaginary time evolution 

For the imaginary time propagation, the initial wave 
function is the eigenfunction of the coordinate operator at 
x = 0.0, Ix = 0), which is a delta function centered at the 
origin. However, the first step in both the split operator and 
kinetic referenced modified Cayley methods can be solved 
analytically and yields a Gaussian function which then be 
used numerically to propagate in the subsequent steps. In 
particular, let 7 be the resulting wave function after the first 
two operations of the first step. For the second order kinetic 
referenced split operator, we have 

-Kd/3/2e-VdWQ(X) = m 
( > 

l/2 
7j=e e -m&d+- V(O)dfi/4 

71.dB 
(25) 

and for the second order potential referenced split operator, 
we have 

77 = e - VdS/Ze - W/4fi(x) 

= & l’Ze- 
( ) 

VWdL?/2e-2mx?d~ 

rdfl 
(26) 

The initial wave function 77 for the kinetic referenced modi- 
fied Cayley method is expressed as 

T=eeKdD12(l -+V)G(x) 

(27) 

Note that the width of 71 is dependent on the magnitude of 
the imaginary time step size dfl. For accuracy in the integra- 
tion, dp is required to be small, but this results in a small 
spread of the delta function, and thus it requires a very fine 
grid spacing to represent the initial wave function adequate- 
ly. In other words, there is no absolute convergence of the 
final wave function as d/3 decreases, however a relative con- 
vergence analysis is valid as seen below. Thus, care must be 
taken in choosing the grid spacing and step size. For this 
reason, since the width of 7 for the potential referenced split 
operator method in Eq. (26) is smaller than that for the 
kinetic referenced split operator method in Eq. (25), the 
kinetic referenced split operator is more efficient than the 
potential referenced one. Consequently, the kinetic refer- 
enced split operator method is chosen to compare with the 
kinetic referenced modified Cayley method, which also has 
the same width, for the imaginary time evolution. The first 
step of the Chebychev polynomial expansion method and 
the potential referenced modified Cayley method in the 
imaginary time evolution does not yield a Gaussian wave 
packet, and thus it is not used in this test. 

For this study, the grid spacing, Ax, is set to 0.01 a, with 
a total of 512 grid points. As mentioned earlier, there is no 
absolute convergence of the final wave function as the time 
step dfl decreases, thus to analyze the accuracy of the inte- 
gration methods, we examine the relative convergence of the 
correlation error of the norm of the final wave function 
which is defined as 

(carrel. error of norm), = N/c -Nk--5 
N/x--5 ’ 

(28) 
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where N, is the norm of the final wave function using the 
total of x steps. The correlation error of the norm as a func- 
tion of the total number of steps is shown in Fig. 7 for the 
temperature of 100 and 300 K. Notice that at low tempera- 
ture the KRSO converges much faster than the KRMC 
method. However, as temperature increases the difference 
between two methods becomes smaller. It is important to 
point out that for the imaginary time evolution, the first fac- 
tor in the right hand side of Eq. (12) can vanish, and thus, 
the modified Cayley method has the possibility of being un- 
stable. In conclusion, for the imaginary time evolution, the 
kinetic referenced split operator method is more stable and 
has faster convergence than the kinetic referenced modified 
Cayley method. 

IV. CONCLUSION 

We have carried out a detailed study of the accuracy and 
stability of quantum mechanical wave packet evolution 
methods, namely, the second and third order split operator 
methods, a time dependent modified Cayley method, and the 
Chebychev polynomial expansion method for both real time 
and, for the SO and MC methods, imaginary time integra- 
tions. We found that for real time integration, if the fast 
Fourier transform is the time consuming step, the kinetic 
referenced modified Cayley method is preferred. However, if 
the potential is the time consuming step then the Chebychev 
polynomial expansion method might be more advantageous 
since it can use larger grid spacing and time step. For imagi- 
nary time integration, we found that the kinetic referenced 
split operator method is preferable. 

Finally, we point out that of the methods considered, 
only the modified Cayley approach holds in general, regard- 
less of whether the potential is time independent or depen- 
dent. The trapezoidal rule is exact for a linear time depend- 
ence over the interval r, and approximate for other 
dependences. The other methods are valid only if 7 is made 
short enough that the potential is effectively constant. Thus, 
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we anticipate that the kinetic referenced modified Cayley 
method should be capable of handling larger time steps for 
such problems. Further, the Chebychev method will no 
longer be able to accomodate such large 7)s since it too is 
valid only for short enough 7 that the potential is constant 
with time. We are currently engaged in the initial computa- 
tions for the main problem of interest, namely, quanta1 pro- 
cesses in biological molecules. 
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