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Abstract

We present the development and assessment on the accuracy of a perturbative approach for Monte Carlo simulations
using a hybrid ab initio quantum mechanical /molecular mechanics (QM/MM) potential. The central idea of this approach
is that for most solvent moves, the changes in the solute wavefunction are small, thus one can use the perturbation theory to
approximate the energy change without having to perform full quantum calculation at each Monte Carlo step. Consequently,
the computational demand can be reduced by several orders of magnitude while maintaining a reasonable level of accuracy.
This opens new possibilities for using more accurate levels of theory to describe both solute and solvent molecules in Monte

Carlo simulations.

1. Introduction

In the last few years, the hybrid quantum mechan-
ical /molecular mechanics (QM/MM) approach [1-
19] has been emerging as a powerful tool for study-
ing processes in condensed media. In this approach,
the system is divided into two regions. The primary
region requires to be treated quantum mechanically.
This region can be either the solute in studying
solvation, the active site of the protein in studying
enzyme mechanism, or the adsorbate plus the local
region of the adsorption site in studying adsorption
and chemisorption processes. Interactions in the re-
maining region are approximated by molecular me-
chanics force fields. This approach rivals ab initio
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dielectric continuum methods [20-22] in overcoming
the limitation of the molecular mechanics method for
studying reactions in solution which involve bond-
breaking and bond-forming processes. In addition, it
includes the solute electronic polarization that is
ignored in classical force fields. A rather complete
collection of references on development and applica-
tions of the QM/MM approach was given in a
recent excellent review by Gao [6].

In the QM/MM approach, the total effective
Hamiltonian is partitioned as

Hy=H®™ + gM/MM 4 MM (1)

where H represents interactions within the quan-
tum region, HMM describes classical interactions
within the MM region, and H /MM denotes inter-
actions between the QM and MM regions. Due to the
computational demand of solving the electronic
Schrédinger equation, most applications of the
QM /MM methods to date were limited to the use of
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semiempirical methods, such as the generalized va-
lence bond [23] or semiempirical molecular orbital
method [6]. The use of ab initio Hartree—Fock /MM
(HF /MM) coupled potential in molecular dynamics
(MD) simulations was first introduced by Singh and
Kollman [12]. Merz and co-workers recently intro-
duced the DFT/MM coupled potential [13,14] and
provided a more detailed assessment on the accuracy
of the HF/MM potential [19]. It is important to
point out that in MD simulations, full self-consistent
field (SCF) calculations of both energy and deriva-
tives are required at every time step. Thus, it is
computationally expensive to reach adequate conver-
gence of the calculated dynamic and thermodynamic
properties. This limits the range of applicability of
QM/MM methods to small quantum regions or to
low levels of theory and small basis sets.

Unlike MD simulations where all atoms move at
each time step, in Monte Carlo (MC) simulations
only one molecule moves at a time. For solvent
move that does not change the solute wavefunction
significantly, one can calculate the corresponding
change in the quantum energy contribution using the
wavefunction from the previously accepted step
without having to perform full SCF calculation again.
This will greatly improve the performance of MC
simulations. The present idea is referred to as the
perturbative MC approach. In this study, we present
the theoretical basis for the perturbative MC simula-
tions and examine their accuracy. While this
manuscript was in preparation, two reports appeared
in print employing this approach, however, no theo-
retical basis and systematic assessment on its accu-
racy was given. One report is by Gao [24] using the
AM1/MM potential, and the other by Tufién et al.
[17] using the DFT /MM coupled potential.

2. Perturbative approach for MC simulations us-
ing QM / MM potentials

In the QM /MM method, the H™M/MM Hanilto-
nian is given by
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where the indices i and A run over the solute
electrons and nuclei, respectively, while « runs over
all solvent atoms. The first two terms represent
electrostatic interactions between solvent atoms and
solute electrons and nuclei, respectively. The last
term describes solvent—solute van der Waals interac-
tions, denoted as E*{" below. A, , and B, , are van
der Waals parameters. The total energy is then ex-

pressed as
QM qn qaZA
Et0t= Y\ H +ZZ_ +ZZ
i a Rla A «a RAa

+EYY + EMM (3)

where EMM s the interaction energy within the MM
region and ¥ is the solute wavefunction.

In MC simulation using the QM /MM Hamilto-
nian given by Eq. (1), when the solvent molecule m
is moved, the effective Hamiltonian in the first term
of Eq. (3) is changed by

AH=} ¥ —qa(%— :

i a€m R;

(4)
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If the perturbation given by Eq. (4) is small, we can
approximate the corresponding energy change within
the first order perturbation theory by

S
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where ¥ is the solute wavefunction from the previ-
ously accepted full SCF MC step. The change in the
total energy for such a perturbative MC step can be

expressed as
1 1
SRR
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where P, is the density matrix element between the
basis functlons |w) and |v), AEYY and A EMM are
the changes in the solvent—solute van der Waals and
solvent—solvent interactions, respectively. Eq. (5) in-
dicates that the main computational cost in calculat-
ing AE,, is the evaluation of a small number of
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one-electron integrals. Consequently, one can expect
significant speed up comparing to MC simulations
when SCF calculation is done at each MC step. In
practice, one needs to perform full SCF calculations
to update the solute wavefunction after a certain
number of perturbative moves. For convenience in
the discussion below, we denote the number of
perturbative moves between two full SCF calcula-
tions as NMOVE.

The accuracy of this perturbative approach criti-
cally depends on the assumption that the perturbation
given in Eq. (4) is small relative to the unperturbed
Hamiltonian. To estimate the magnitude of errors,
we performed MC simulations for the enthalpies of
binding at 25°C of several ion-H,0 complexes:
Li*-H,0, Na*-H,0, Na'-(H,0),, F -H,0,
Cl"-H,0 and Cl1"—(H,0),. These strongly bound
complexes present the most severe tests of the per-
turbative approach since more distant water
molecules in solution would yield smaller perturba-
tions. Furthermore, using these ion—water complexes
rather than full solvation studies allows us (1) to
separate methodological errors resulting from ap-
proximations made in the theory (Eq. (5)) from
model errors associated with the periodic boundary
condition; (2) to estimate the lower bound for the
parameter NMOVE for simulations in solutions and
(3) to compare with reliable experimental data. The
computational costs of both cluster and liquid-phase
simulations should be similar since the major compu-
tational demand is in the quantum calculations. Cal-
culations of binding enthalpies were done using our
local interface between the G92 /DFT [25] and BOSS
[26] programs. The TIP3P model [27] was used for

water molecules. OPLS parameters [28] were used
for the solvent—solute van der Waals interaction. An
equilibration period consisted of 103 steps in which
ions were treated as classical point charges followed
by 10* quantum equilibration steps in which ions
were treated quantum mechanically at the HF/6-
31G* " level. For each equilibrated complex, several
10“-step averaging runs were performed with differ-
ent values of NMOVE. We found that 10* averaging
steps yield a standard deviation of about 0.2 kcal /mol
in the binding enthalpies which is sufficient for our
purpose. ‘

3. Results

In this study, we focus on the accuracy of calcu-
lated enthalpies of binding of the ion—water com-
plexes and the convergence of the calculated results
with respect to the parameter NMOVE. The calcu-
lated enthalpies of binding are listed in Table 1. At
each full SCF step, we calculated the error in the
differential solvent—solute electron electrostatic en-
ergy by comparing AE,, (Eq. (5)) calculated with
the density matrix from the current full SCF calcula-
tion and that from the previous full SCF step. Root
mean square (RMS) errors of this energy contribu-
tion are also listed in Table 1 and plotted versus
NMOVE in Fig. 1.

The HF/6-31G* " /OPLS calculated enthalpies
of binding of anion—water complexes are in good
agreement with experimental data [29,30], though
generally smaller by about 1 kcal/mol. The calcu-
lated enthalpies of binding of Na*—(H,0),, com-

Table 1
Enthalpies of binding (kcal /mol) for ion—(H,0), complexes
NMOVE®  Li"-H,0 Na*-H,0 Na*-(H,0), F -H,0 Cl -H,0 Cl™—(H,0),
1 —31.95+0.03 —22.12 4 0.04
10 —31.93 (0.004)° —26.79(0.011) —52.67(0.010) —22.73(0.125) —13.40 (0.052) —26.46 (0.056)

100 —31.93 (0.006) —26.45(0.019) —52.65(0.021) —22.67(0.156) —13.42(0.076) —26.48 (0.127)

500 —31.92(0.014) —26.39 (0.054) —52.56 (0.045) —22.62 (0.200) —13.33(0.140) —26.44 (0.189)
1000 —31.89(0.020) —26.42 (0.055) —52.61(0.077) —22.41(0.352) —13.34(0.139) —26.30 (0.170)
2000 —31.90 (0.025) —26.42 (0.106) —52.51(0.041) —22.38 (0.391) —13.27(0.111) —25.92(0.231)
Exp. —34 (est.) —24 —44 —24 —14.7 -27.7

ANMOVE is the number of MC steps between two successive full SCF calculations.
®Values in parentheses are the RMS errors (kcal / mol) of the solvent—solute electron electrostatic interactions.

“Refs. [29,30].
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Fig. 1. Plot of the RMS errors (kcal /mol) of the solvent—solute
electron electrostatic interaction as functions of NMOVE, the
number of MC steps between two successive full SCF calcula-
tions.

plexes are overestimated by more than 2 kcal /mol
while the predicted value for Li*—H,O is 2 kcal /mol
too small. The differences between our calculated
results and experiments can be due to several sources:
(1) the deficiency in the description of the QM
wavefunction, i.e. such as neglecting electron corre-
lation effects and the use of small basis set; and (2)
inconsistency between OPLS van der Waals parame-
ters and the QM/MM level of theory. The later
point was raised recently by Stanton et al. [19]. This
supports the need for reoptimization of the van der
Waals parameters for QM /MM methods.

The most significant result of this study, however,
is a technical one. The calculated enthalpies of bind-
ing were found remarkably stable with respect to
NMOVE even when NMOVE is as large as 2000 in
all cases considered here (see Table 1). The RMS
errors of the solvent—solute electron electrostatic
interaction are larger for anion—water complexes
compared to the cation—water complexes as shown
in Fig. 1. This is expected due to the larger elec-
tronic polarizability for anions. This difference is
also reflected in the average induced dipole moments
of solutes which are less than 0.02 D for cations and
about 0.1 D for anions. The errors generally increase
as NMOVE increases. The largest error is about 0.4
kcal /mol for the F"—H,0O complex.

Since the computational cost is roughly propor-
tional to the number of full SCF calculations and
inversely proportional to NMOVE, the computa-
tional cost for NMOVE = 1000 is three orders of
magnitude less compared to the NMOVE =1 case.
Note that in liquid-phase simulations, NMOVE can
be much larger since the majority of MC steps will
involve displacements of solvent molecules which
are farther from the solute. It is possible to introduce
an error weighting function to optimize the variable
NMOVE as the simulation proceeds. We will ad-
dress this issue in a future study.

1]
4. Conclusions

We have shown that the perturbative approach for
MC simulations of solvation processes using ab ini-
tio QM/MM potential offers significant computa-
tional advantage. The computational cost can be
reduced by several orders of magnitude without sac-
rificing accuracy. This opens new possibilities for
high-level ab initio electronic structure theory treat-
ment for solutes and for more accurate treatment of
solvent molecules such as using the pseudopotential
[31] or frozen density [32,33] methods in MC simula-
tions of reactions and spectroscopic properties in
solution. All these possibilities are being investigated
in our laboratory.
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