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A QM/MM methodology for modeling chemical reactions at solid-
liquid interfaces is presented. This new method combines advances in
dielectric continuum solvation models for describing polarization of
the liquid with the embedded cluster approach for treating
interactions in the solid. In addition, a new method for simple, vat
accurate, incorporation of the Madelung potential effect in embedded
cluster calculations is discussed. The advantages and accuracy of
this method are demonstrated in a number of test calculations.
Geometries and adsorption binding energies of H20O at the
NaCl(001)/water interface are calculated and compared with those
at the NaCl(001)/vacuum interface.

In recent years the emphasis in quantum chemistry has been shifting from properties
of gas-phase molecules and reactions toward challenging areas of condensed phase
systems. In particular, molecular processes at solid-liquid interfaces have attracted
much attention as they play important roles in environmental chemistry,
biochemistry, electrochemistry, heterogeneous catalysis, and other fields. For
example, sodium chloride crystals, apart from being a useful model system for
theoretical developments, participate in a number of atmospheric processes. Sea
salt aerosoles react with various gases, such as NOp, in the earth's troposphere (1,2).
Adsorbed water certainly plays a key role in these reactions. Despite much
experimental progress, very little is known for certain regarding mechanisms of
interfacial processes. Many experimental surface sensitive techniques such as
thermodesorption, scanning tunneling, and photo-electron spectroscopies, require
low coverage, ultra-high vacuum, or extreme temperature conditions, thus may be not
directly relevant to the solid-liquid interfacial systems found in Nature. Theory can
play a crucial role here.

Accurate theoretical modeling of functional groups and sorption complexes
at the interface, however, is a difficult task because interfacial energetics are driven
by a complicated balance between hydration forces and crystal-solute interactions.
Any theory for realistic modeling of chemical reactions at solid-liquid interfaces
should provide an accurate description of bond-forming and -breaking processes
and interactions of adsorbates and surface defects with the crystal lattice and
solvent. Below we discuss some advantages and weaknesses of three common

92 ©1998 American Chemical Society



93

theoretical approaches that can be employed to study interfacial chemical processes,
namely the periodic quantum mechanical, classical molecular mechanics, and
quantum embedded cluster methods.

The main advantage of ab initio periodic supercell calculations is that they
permit an accurate description of interactions between the active surface site and the
rest of the crystal. However, periodic models suffer from difficulties with
representing the statistical nature of the solvent and cannot avoid spurious
interaction between defects or active sites in adjacent unit cells (3). Often these
methods are not practical for modeling low-symmetry defect sites and exploring
potential energy surfaces. Furthermore, periodic boundary conditions are not
particularly suitable for studying charged defects. Full ab initio quantum mechanical
calculations of solid-liquid interfaces to date are limited to studies of monolayer or
bilayer adsorption of water molecules using small surface unit cells (4-13) .

Classical molecular mechanics, in conjunction with Monte Carlo or molecular
dynamics methods, is a powerful tool for analyzing structure and thermodynamic
properties of condensed phase systems. In particular, valuable information has been
obtained for solvent structure near the MgO-water (14) and NaCl-water (15-17)
interfaces, acidities of hydroxyls at the FepOj3-vacuum interface (18), and
stabilization of AlpOj3 surfaces by hydroxyls (19). However, current molecular force
fields do not provide an accurate representation of reactive jrocesses such as
dissociative chemisorption. Performance of these approaches depends on advances
in development of molecular mechanics force fields which is a difficult and time-
consuming task (20).

The quantum embedded cluster approach (21-23) takes advantage of the
localized nature of surface chemical processes, so that only a relatively small
molecular system (active center + adsorbate, or quantum cluster) can be treated
quantum mechanically by accurate ab initio or DFT methods using large basis sets.
The rest of the crystal lattice and solvent (environment) are treated classically. Their
action on electrons in the cluster is represented by adding an embedding potential

Vmbed(r) to the quantum Hamiltonian of the cluster. Flexibility and comparatively

low computational cost of the embedded cluster approach makes it especially
suitable for studies of chemical interactions at solid-liquid interfaces.

In this paper, we discuss applications of our recently proposed quantum
cluster methodology, called CECILIA (Combined Embedded Cluster at the Interface
with LIquid Approach), for modeling chemical phenomena at non-metal solid-liquid
interfaces (24). CECILIA combines advantages of the embedded cluster method
discussed above with the dielectric continuum method for solvation. We focus on
two important aspects that are critical for the accuracy of the CECILIA model: the
solvent polarization field and Madelung potential from the crystalline lattice. These
are two long-range components which often make dominant contributions to the

total embedding potential Vembed(r) for a cluster located at the solid-liquid
interface. For solvent polarization, the dielectric continuum approach provides a
cost effective methodology and is an active area of research in liquid phase solvation
studies (see, for example Generalized COnductor-like Screening MOdel (GCOSMO)
calculations in Refs. (25-31)), however, its application for solid-liquid interfaces is a
new and unexplored area. For ionic and semi-ionic compounds, the Madelung

potential from the crystal lattice makes an important contribution to V.. ( r ) For
this contribution we recently proposed a new SCREEP method (Surface Charge
Representation of the Electrostatic Embedding Potential; Stefanovich, E.V.; Truong,
T.N. J. Phys. Chem.., submitted) that can accurately replace the Madelung potential
active on a quantum cluster by a potential from a finite set of point charges located
on a surface surrounding the cluster. In this chapter we will briefly describe both
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GCOSMO and SCREEP methods focusing on their use of a common mathematical
technique, i.e., solution of the electrostatic Poisson equation with the boundary
condition for an ideal conductor. We also present calculation results for geometries
and adsorption binding energies of H»O at the NaCl(001)/water and
NaCl(001)/vacuum interfaces. In the next section we briefly describe the physical
model of the solid-liquid interface employed in this study.

A Physical Model of the Solid-Liquid Interface
In our CECILIA approach, the whole system (surface defect + crystal + solvent) is

divided into three main regions (Figure 1) designed to maximize the chemical
accuracy while keeping the problem tractable by modern computers.
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Figure 1. The CECILIA model. (Adapted from Ref. (24))

The innermost quantum mechanical region (I), or quantum cluster where
chemistry occurs, is treated accurately by either ab initio molecular orbital or density
functional methods. Normally, the quantum cluster may consist of several lattice
atoms near the defect site, the adsorbate, and a few water molecules making strong
hydrogen bonds with the surface complex. The buffer zone (II) may include several
dozen atoms in the crystal lattice and several solvent molecules treated as classical
particles surrounding the quantum cluster. This region is designed to describe short-
range forces between nuclei and electrons in the quantum cluster and the surrounding
medium. The peripheral zone (III) provides for a correct Madelung potential from the
crystal lattice and the long-range solvent polarization potential in the quantum
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cluster and buffer regions. In this paper, we are primarily concerned with an
accurate description of the peripheral zone.

In the CECILIA approach, a self-consistent treatment of the solvent
polarization is achieved by using the GCOSMO dielectric continuum solvation model
in which the liquid is modeled as a dielectric continuum separated from the solute (in
our case crystal surface and adsorbate) by a sharp boundary. In homogeneous
solvation studies, this boundary is constructed as a set of interlocking spheres
centered on nuclei and having fixed radii fitted to experimental hydration free
energies of ions and molecules (31). The solvent polarization field is then
represented as charge density on the boundary determined self-consistently with the
charge density distribution of the solute. =~ We will demonstrate how this
methodology can be applied for the solid-liquid interface situation.

To represent the Madelung potential from the crystal lattice acting inside the
quantum cluster is not a trivial task even if we assume that the crystal in the
peripheral zone is composed of point ions situated at lattice sites. Although in such

a case one can easily evaluate the corresponding electrostatic potential V,;(r) at
any given point in the cluster, for instance by using Ewald summation formulas, the

difficulty arises from the necessity to calculate matrix elements <,u|Ve[ (r)| V> over

cluster basis functions. One possibility is to perform a direct calculation of matrix
elements of the Ewald potential (32). However, implementation of this method (see
DICAP (33) and EMBED (34) codes) requires significant modifications in standard
molecular quantum chemistry programs. In addition, no analytical energy
derivatives are currently available. A more common methodology is to substitute the
infinite lattice by a finite number of point charges placed at ideal lattice sites R; that
have values corresponding to ionic charges in the crystal (35-40). This method has
the advantage that matrix elements of the point-charge potential, as well as their
first and second derivatives, are readily available in most quantum chemistry
programs (as nuclear attraction integrals). However, construction of such finite
lattice models becomes rather difficult for complex low-symmetry crystals. A well-
known difficulty for such an approach is that results converge very slowly, if
converge at all, when the size of the explicitly considered lattice is increased. Thus,
there is no simple way for systematic improvement of results.

To illustrate this poor convergence, consider the electrostatic potential from
an infinite 5-layer slab of point charges (+1) parallel to the (001) plane of the
rocksalt (NaCl) lattice. Let us first demonstrate the performance of the traditional
embedding scheme in which the infinite lattice is substituted by a neutral block with
dimensions n X n X m (n=6-14, m= 3-5), m layers deep. As an indication of the
accuracy we calculated the RMS deviation of the model potential from the_exact
Ewald potential at 21 equidistant points having z-coordinates between 1.0A and
5.0A directly above the surface cation. These results are presented in Table I below.
As expected, they show rather poor convergence when the size of the explicitly
treated lattice is increased.

Table I. RMS deviations (in kcal/mol) from the exact Madelung potential above
the NaCl(001) surface for finite lattice models with dimensions n X n X m.

nXxXn 6 X6 8 x 8 10 x 10 12 x 12 14 x 14

=

3 3.64 1.71 0.97 0.60 0.39
4 242 0.83 0.35 0.17 0.09
8 3.10 1.40 0.80 0.51 0.34
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In what follows we want to show that accurate representation of both the
Madelung potential and the solvent polarization field can be achieved by using
basically identical mathematical techniques, i.e., applying the boundary condition for
a conductor in the external electrostatic field.

Boundary Condition for a Conductor in the External Electric Field

Consider a region of space C where the charge density is zero and the electrostatic

potential is produced by the charge distribution p(r) lying entirely outside C. A
well-known theorem from electrostatics states that no matter what is the charge

distribution p(r) outside C, its electrostatic potential V,(r) inside C can be

rigorously replaced by some surface charge density G (r) located on the boundary S

of the volume C. The demonstration goes as follows. First assume that we have
filled the volume C (interior of the surface S) with an ideal metallic conductor. The
electrostatic potential inside S becomes exactly zero independent of the external

potential V,;(r). Physically, this condition is satisfied due to creation of the
. : o(r’) .

charge density —o(r) on the surface S whose potential —ﬂ——,ld r exactly

compensates the external potential V,;(r) for all points r on the surface S and in its

interior.

V.0-§35 2 g )
S

i

This means that the electrostatic potential generated by the charge density © (r) on
the surface S and in its interior is exactly equal to the original potential V, (r) (The
potential generated by G(r) outside the surface S is generally different from
V(x)).

For computational reasons, we resort to the boundary element method to

represent the continuous surface charge density © (r) on the surface S by a set of M
point charges gj located at the centers rj of surface elements with areas §.

;= olr,)s)

This approximation is accurate when the number of surface points M is large enough,

and the charge distribution (S(r) is sufficiently smooth. Then Eq. (1) can be
approximated by a matrix equation

V-Aq=0 (3)
from which the vector of surface charges q can be determined by applying any

common technique available for solving systems of linear equations. For example,
one can use the matrix inversion method.
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q=A"lv (4)

In Egs. (3) and (4), the vector V contains values of the external electrostatic potential
at points rj (V ji= Vel ( r; )), and A is the M X M non-singular matrix with matrix

elements.

=—— forj#i,and A =107 4—7£ (5)
=i ’ ’

Non-diagonal elements Ajj represent a generic Coulomb interaction between surface
elements rj and 1j. cflagonal elements Ajj describe the self-interaction of the
surface element r ThlS self-interaction was discussed in detail by Klamt and
Shiitirmann (41), and the coefficient 1.07 was fitted by these authors for better
numerical accuracy.

The CECILIA Model

The computational method described above was first applied by Klamt and
Shiitirmann (41) in their COSMO (COnductor-like Screening MOdel) dielectric
continuum model for solvation in the bulk liquid. The virtue of using conductor
boundary conditions for aqueous solvent comes from the fact that water has a
rather high dielectric constant (€ =78.3), thus screening properties of the solvent are
similar to those of an ideal conductor. Therefore, in the first approximation of the
CECILIA model, liquid can be represented as a conductor in the electrostatic field
generated by the crystal and adsorbate. Two points should be made. First, one
should correct conductor surface charges to account for the finite dielectric constant
of water. Second, surface charges should be determined self-consistently with the
electronic and atomic structure of the quantum cluster. Thus, instead of Eq. (4), the
equation for surface charges is

q=-Saly ©)
E

where the vector V contains electrostatic potentials produced by the charge density
of the crystal at points rj on the dielectric cavity. This potential can be conveniently
separated into contributions from classical particles (atomic nuclei in the quantum
cluster and classical particles in the buffer and peripheral zones) with charges zj and

positions R; and from the electron density p(r) in the quantum cluster

Vj :V;‘lass+ngl l I l J‘I p(r) 335 )
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Correspondingly, surface charges in Eq. (6) can be separated into "classical” quaSS
and "electronic" qel components. The classical surface charges are taken into
account by adding the term

b
H, = QL + Wit +(u|V, (r)]v) ®)

to the one-electron part of the Fock matrix for an isolated cluster ( H Sv). Here LLV

are matrix elements of the potential generated by a unit point charge at the point r;
on the dielectric cavity. In contrast to the GCOSMO Hamiltonian for a solute in the
bulk liquid (30), this expression contains additional matrix elements of the short-

range embedding potential Wzl‘l’f from the buffer zone and Madelung potential

</i|Vel(r)| V) from the buffer and peripheral zones. The former term may be

represented by different embedding techniques including the pseudoatom (42),
localized orbitals (43), density functional (44), or pseudopotential (33,45-48)

methods. For such ionic compound as NaCl, the pseudopotential form of Wﬁl“/f

has been found to be rather accurate. The Madelung potential term will be discussed
in more detail in the next Section. Another difference with the bulk solvation case is
that the surface of the cavity is not closed. Only the quantum cluster and its nearest
neighbors on the crystal surface need to be solvated to obtain relative energies of

surface configurations (24). The contribution of electronic surface charges q¢! to the
two-electron part of the Fock matrix is given by

GS, =q°Lyy 9)

Then, the self-consistency between the electron density and solvent polarization field
is achieved in a single SCF procedure by calculating q and GISIV from Eqgs. (6) and

(9), respectively, at each iteration.
The total energy of the quantum cluster at the solid-liquid interface in HF and
DFT methods is expressed as

Eror = X [Py (Hip+ iy} P, (Gh G )|
Hv (10)

+ qclassvclass - Enn - Enon—eLs

where P, | is the converged density matrix of the quantum cluster, E, , is the energy

of interaction between classical particles, i.e. nuclei in the QM cluster and ions in the
buffer and point charge zones. Apart from Coulomb interactions, this term may
include short-range potentials taken from various force-fields. E, , . contains non-
electrostatic dispersion-repulsion and cavity formation contributions to the solvation
free energy. First and second derivatives of the total energy (6) with respect to the
coordinates of atoms in the cluster and buffer zone are available (25). This allows
for efficient geometry optimization of adsorbate structures at solid-liquid interfaces.
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The SCREEP Model

The conductor boundary conditions discussed above can also be used to
conveniently replace the Madelung potential in the quantum cluster by a finite set of
point charges. This allows for straightforward calculation of corresponding matrix
elements ( M Ivel (r)| V). Let us first define a closed surface S such that all quantum
cluster atoms and the GCOSMO dielectric cavity lie inside this surface (see Figure 2).

Figure 2. Side view of the [Na5Clg+H20]* cluster on the NaCl(001) surface
and sketch of the CECILIA model. Shaded circles are ions from the quantum

" on "o

cluster; empty circles are Nat ECPs from the buffer zone; "+" and "-" symbols
inside squares denote point charges in the explicit zone; the potential from
other lattice charges is modeled by the charge density on the SCREEP surface
S; surface G is the dielectric continuum cavity.

As in continuum solvation methods, surface S can be constructed as a set of
interlocking spheres of radius R centered on cluster nuclei and discretized into a
finite number of surface elements. Then Madelung potentials on the surface elements
can be calculated by using the Ewald summation technique (note that the
contribution from lattice ions inside the surface S should be subtracted from the
Ewald sum) and values of surface charges q can be obtained from Eq. (4). The
potential generated by these charges can be used as a substitute for the Madelung
potential inside the surface S, i.e., in the quantum cluster and on the GCOSMO
dielectric cavity.

Our analysis of the SCREEP approximation revealed two important points.
First, the radius Ry should be large enough so that a major part of the cluster wave
function is contained inside the surface S. Second, for better accuracy of the
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SCREEP model one should treat explicitly the potential from lattice ions lying close
to the quantum cluster. This means that we directly include the potential of these

ions in calculation of (/llVel(r)| V) and subtract this potential from the vector V

used in Eq. (4). Moreover, the explicit zone (shown schematically by "+" and "-"
symbols inside squares in Figure 2) should be selected in such a way that its total
charge is zero or small.

Calculation Details

In the rest of this paper we consider applications of the SCREEP and CECILIA
methods to study water molecule adsorption on the unrelaxed rock-salt NaCl(001)

surface and NaCl(001)-water interface. The quantum cluster [NasClg+H20]*

selected for these studies contained nine surface atoms that form a square 3 x 3
substrate and adsorbed water molecule (Figure 2). As NaCl is a rather ionic crystal,
we do not expect that slight deviation from stoichiometry and assignment of the
integer charge (+1) to this cluster will affect results in any significant way.
Geometries for water molecules in different environments (gas phase, liquid phase,
adsorbed on the clean surface, and adsorbed at the interface) were fully optimized
at the pseudopotential Hartree-Fock level. The oxygen atom was described by the
SBK effective core pseudopotentials (ECP) and CEP-31+G* basis set (49). The
311++G** basis set was used for hydrogens. Na and Cl ions were described by the
Hay-Wadt ECP and standard valence double-zeta basis sets (50). Electron
correlation was included at the MP2 level as single point calculations at HF
optimized geometries. Dissociation and adsorption energies were calculated as total
energy differences between the compound system and its separated fragments.

The short-range embedding potential Wzl‘l[f (exchange, Pauli repulsion) was

represented by Hay-Wadt ECP for Na® cations that are nearest neighbors to the

quantum cluster. More distant Na* ions can be rather accurately treated as point
charges (q=+1). Actually, when they were treated as pseudopotentials, cluster
energies changed by less than 0.1 kcal/mol. We are not aware of any accurate
whole-ion pseudopotential representation of lattice CI. However, as indicated in
Refs. (33,45), the ground-state electron density in the quantum cluster only slightly
penetrates surrounding anions, therefore they can be described rather accurately in
the point charge (q=-1) approximation.

Cavities for SCREEP and CECILIA calculations were constructed using the
gepol93 algorithm (51) as a set of interlocking spheres centered on atoms. The
dielectric cavity adjusted automatically when atoms in the quantum region moved
during the geometry optimization, while the SCREEP surface remained fixed. Each
complete atomic sphere contained 60 surface charges. Atomic radii for the CECILIA
cavity were taken from our previous work (24,31): 1.172 A for H, 1.576 A for O,
1.61 A for Na, and 1.75 A for Cl. The cavity boundary was truncated so that only
atoms in the cluster and their nearest neighbors on the surface were solvated. The
effect of suc’. truncation was found to be insignificant. For example, when the
boundary was truncated so that only cluster atoms were solvated, the adsorption
energies changed by less than 0.1 kcal/mol.

The SCREEP surface S was constructed by making spheres of radius Ra= 2.5
A around each atom in the cluster and around 9 additional centers having z-
coordinates of 4.0 A just above each atom in the cluster (Figure 2). Introduction of
these additional centers comes from the necessity to provide enough space for
placing adsorbate molecules inside the SCREEP surface above the crystal. Using the
same accuracy criterion as in Table I, we found that the SCREEP method gives a
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much more accurate (RMS error of less than 0.01 kcal/mol) Madelung potential than
any finite lattice n X n X m representation shown in Table I.

Theterm E, , . in eq. (10) was calculated using methods described in Refs.
(52,53) with the optimized solvent water radius of 1.29 A (31). We used the OPLS
force field parameters (54) for calculating dispersion-repulsion interactions with the
solvent in this work. All calculations were performed by using our locally modified
version of the Gaussian92/DFT computer code (55).

Results and Discussion

Let us first compare three embedding schemes for HpO adsorption on the
NaCl(001)-vacuum interface: no embedding at all, i.e., adsorption on the bare
[NasClg]t cluster; embedding in the finite 8 X 8 X 4 lattice of point charges (+1)
(247 explicit lattice ions outside cluster); and the SCREEP embedding scheme (121
lattice ions in the explicit zone plus 422 point charges on the surface S). These
results are presented in the first three columns in Table II.

Table II. Geometry (distances in A, angles in degrees)2 and adsorption energy
(kcal/mol) for H20 molecule adsorbed on the NaCl(001) surface calculated using

the [Na5Clg+H20]* quantum cluster and different embedding schemes. The
most accurate results are shown in bold.

Solid-vacuum interface Solid-liquid interface
Madelung no 8x8x4 SCREEP 8x8x4 8 x 8 x4 SCREEP
potential
Buffer zone no no no ECP ECP ECP
Solvent effects no no no no yes yes
Oz 2:390 2.384 2.380 2.401 2599 2.597
[2.43]€
Ox=0y 0.294 0.374 0.375 0.409 0.057 0.047
OH 0.948 0.949 0.949 0.949 0.952 0.952
HOH angle 106.4 106.2 106.2 98.3 104.5 104.4
tilt angle 19.6 5.4 5.9 0.3 11.9 12.8
[30.5]¢
Adsorption 7.5 8.3 8.3 6.7 3.6 3.6
energy [7.8]C (8.1)P (5.5)b (5.5)b

a The origin was placed at the central Na* ion in the cluster; x and y axes were
directed toward nearest surface Cl- ions; the z-axis pointed outside the crystal.

bn parentheses results of MP2 single-point calculations.

C In square brackets theoretical results from Ref. (56).

H720 ausorbs on the NaCl(001) surface with oxygen above the Nat site and
hydrogen atoms pointing symmetrically toward nearest anions and slightly away
from the surface (24). As seen from Table II, the neglect of the Madelung field in the
cluster leads to some increase of the oxygen-surface distance and molecular tilt angle
(the angle between the molecular axis and the surface). This comparison may
explain why recent ab initio calculations of H2O/NaCl(001) adsorption using the
NagClg cluster without any embedding potential (56) overestimate these
parameters. The adsorption energy calculated by these authors (7.8 kcal/mol) is
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also close to our result for the bare cluster (7.5 kcal/mol). Results for 8 X 8 x 4
and SCREEP embedding schemes agree with each other but differ significantly from
those for the bare cluster. Comparison of the 8 X 8 X 4 and SCREEP embedding
schemes serves two purposes. First, it confirms our correct implementation of the
SCREEP method. Second, it indicates that traditional finite lattice embedding (the
8 X 8 X 4 lattice in our case) may be quite successful for simple crystal lattices if
proper care is taken in selecting the finite lattice size (24,44,57,58). Thus, real benefits
of using SCREEP embedding can be revealed in studies of complex crystal lattices,
such as zeolites, where traditional embedding models are not easy to construct.

The importance of the non-electrostatic short-range embedding potential

( W'Lbf“,f in eq. (8)) can be seen by comparing results from the second column in Table

IT with calculations in which cations nearest to the quantum cluster were represented
by Nat effective core pseudopotentials (4th column in Table II). The latter more
accurate treatment leads to a decrease of the adsorption energy by 1.6 kcal/mol,
decrease of the molecular tilt angle by 5.1 degree and increase of the adsorption
distance by 0.017 A. Taking into account correlation effects at the MP2 level, the
adsorption energy of 8.1 kcal/mol is in reasonable agreement with experimental data
(8.5-13.1 kcal/mol, see Ref. (24)). Note that the adsorption energy is likely to be
overestimated in experiments due to the presence of surface defects.

Results for HyO adsorption at the NaCl-water interface are shown in the 5th
(8 x 8 X 4 embedding) and 6th (SCREEP embedding) columns in Table II. In both
cases, Nat pseudopotentials were used in the buffer zone. As expected, both
embedding models give similar results. The screening effect of the solvent reduces
attraction of the HpO molecule to surface ions (compare with results in the 4th
column). The distance of the oxygen atom from the surface increases by 0.2 A. H
atoms no longer feel a strong attraction to CI- lattice anions, therefore, the tilt angle
between the molecular axis and surface plane increases from 0.3 to 12-13 degrees,
the lateral shift of the molecule along the <110> axis decreases substantially, and the
HOH angle increases to the value of 104.4 characteristic for the hydrated water
molecule. In general, the internal structure of the HpO molecule adsorbed at the
interface is much closer to the geometry of hydrated H7O than to the geometry of
water adsorbed at the clean NaCl(001) surface. In agreement with these results,
dielectric screening by the solvent reduces the interaction energy between HO and
the solid surface by about 2.6 kcal/mol. However, there is still a noticeable
attraction (5.5 kcal/mol) which immobilizes the HoO molecule near the NaCl surface
in agreement with previous molecular dynamics simulations(15,17) and a helium
atom scattering study (16). About half of this adsorption energy (2.6 kcal/mol) is
due to non-electrostatic solvation effects (24).

Conclusion

We presented a general methodology for ab initio embedded cluster calculations of
reactivity at the solid-liquid interface (CECILIA model). A new important
component of this model is the SCREEP method which allows to accurately
represent the Madelung potential in embedded cluster calculations of solids. With
appropriate choice of computational parameters, the SCREEP method can easily
provide a RMS deviation of less than 0.1 kcal/mol from the exact lattice potential.
It is important that this method requires only a negligible increase (1-2%) of the
computational time in our quantum embedded cluster calculations as compared to
the bare molecule calculation, and the accuracy level can be improved in a simple
and systematic way. Moreover, no modifications to existing molecular quantum
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chemistry programs were required. Positions and values of surface charges need to
be determined only once from a separate simple calculation. In addition to efficient
geometry optimization, our current implementation of the CECILIA and SCREEP
approaches allows for calculation of vibrational frequencies and excited states.
Extensive studies of adsorption and reactions at MgO-water, TiOp-water, and
AlpOs-water interfaces are currently underway in our laboratory.
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