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Ž .ABSTRACT: We introduce TheRate THEoretical RATEs , a complete
Ž .application program with a graphical user interface GUI for calculating rate

constants from first principles. It is based on canonical variational transition-state
Ž .theory CVT augmented by multidimensional semiclassical zero and small

Ž .curvature tunneling approximations. Conventional transition-state theory TST
with one-dimensional Wigner or Eckart tunneling corrections is also available.
Potential energy information needed for the rate calculations are obtained from
ab initio molecular orbital andror density functional electronic structure theory.
Vibrational-state-selected rate constants may be calculated using a diabetic
model. TheRate also introduces several technical advancements, namely the
focusing technique and energy interpolation procedure. The focusing technique
minimizes the number of Hessian calculations required by distributing more
Hessian grid points in regions that are critical to the CVT and tunneling
calculations and fewer Hessian grid points elsewhere. The energy interpolation
procedure allows the use of a computationally less demanding electronic
structure theory such as DFT to calculate the Hessians and geometries, while the
energetics can be improved by performing a small number of single-point
energy calculations along the MEP at a more accurate level of theory. The
CH q H l CH q H reaction is used as a model to demonstrate usage of the4 3 2
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Introduction

he fields of computational fluid dynamics,T process simulation and design, combustion,
and atmospheric chemistry are just a few of the
areas that need accurate rate constants of the un-
derlying elementary chemical reactions.1] 3 Predict-
ing rate constants is in fact a major goal of compu-

4 Žtational chemistry. The TheRate THEoretical
.RATEs program seeks to bring together many of

the recent advances in computational chemistry
methods in a user-friendly environment to calcu-
late elementary reaction rate constants from first
principles, and seeks to bridge the gap between
chemistry and chemical engineering.

Calculations of rate constants require a delicate
balance between the accuracy of the dynamical
theory and the efficiency in obtaining accurate
potential energy information. In the extreme of
rigorous dynamical treatment, accurate quantum
dynamics calculations yield detailed state-to-state
reactive cross-sections or rate constants with full
consideration of quantum effects.5 ] 9 However,
such calculations are currently limited to four-atom
reacting systems with the use of global analytical
potential energy functions. In the other extreme,

Ž .transition-state theory TST has been practical for
a wide range of chemical processes due to its
simplicity. The basic model only requires potential

Ž .energy information at the reactant s and transition
state, because it treats many dynamical effects
only approximately. The major advantage of TST
is that such limited potential energy information
may be obtained from accurate electronic structure
calculations without the need of an analytical po-
tential energy function. Variational effects andror
tunneling are important in many reactions, and for
these systems more accurate dynamical treatments
are desirable. For instance, variational transition

Ž .10, 11state theory CVT provides a well-established
methodology to bridge this gap. In this case, more
information on the potential energy surface is
needed. Conventionally, the additional informa-
tion is obtained by first constructing an analytical
potential function which is fitted to results from
accurate electronic structure calculations and
available experimental data.12 ] 14 This becomes an
impossible task as the size of the reacting system

Ž .increases, because: i the number of energy points
required grows geometrically with the number of

Ž .internal coordinates; ii potential functional forms

Ž .are arbitrary; and iii fitting procedures do not
guarantee convergence and correct global topol-
ogy.12 The direct dynamics approach offers a vi-
able alternative for studying the kinetics and dy-
namics of complex systems. In the direct dynamics
approach, all required energies, forces, and geome-
tries needed to evaluate dynamical properties are
obtained directly from electronic structure calcula-
tions rather than from empirical analytical force
fields.15 ] 21

The direct dynamics approach, however, is lim-
ited by the computational demand of electronic
structure calculations. For thermal rates, reaction
path Hamiltonian methods22 ] 25 such as the canon-

Ž .ical variational transition-state theory CVT are
particularly attractive due to the limited amount
of potential energy and Hessian information that is
required.26 Direct dynamics with CVT thus offers
an efficient and cost-effective methodology. Fur-
thermore, several theoretical reviews27, 28 have in-
dicated that CVT plus multidimensional semiclas-
sical tunneling approximations yield accurate rate
constants not only for gas-phase reactions but also
for chemisorption and diffusion on metals. To fully
converge thermal rate constants, however, existing
methodologies require a large number of Hessian
points along the reaction coordinate. Computation-
ally, it is expensive if these Hessians are to be
calculated at an accurate level of ab initio molecu-
lar orbital theory.

Several approaches have been proposed to re-
duce this computational demand. One approach is
to estimate rate constants and tunneling contribu-
tions by using the Interpolated CVT when avail-
able accurate ab initio electronic structure informa-
tion is very limited.29 Another is to carry out CVT
calculations with multidimensional semiclassical
tunneling approximations using a semiempirical
molecular orbital Hamiltonian at the neglect-of-di-

Ž .atomic-differential-overlap NDDO level as a fit-
ting function in which NDDO parameters have
been readjusted to represent accurately activation
energy for specific reactions.30, 31 Both of these ap-
proaches have been applied successfully to various
gas-phase chemical reactions.17, 32 ] 44 However,
many difficulties persist. In particular, in the for-
mer interpolated CVT approach, it is difficult to
correlate vibrational modes at the transition-state
region to reactant and product asymptotes due to
mode crossings that occur in most polyatomic sys-
tems. In the latter, it may prove to be difficult to
adjust the original NDDO parameters to describe
accurately the transition-state region if the original
NDDO potential energy surface differs signifi-
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cantly from the reference accurate ab initio surface.
Furthermore, even if the parameters are adjusted
to reproduce the barrier height and force constants
at the transition state,31 there is no guarantee that
the reaction path curvature and coupling between
vibrational modes and reaction coordinate are cor-
rect. These factors directly affect the computed
tunneling probability and product-state distribu-
tions.45 Recent development in combining both
approaches into what is known as dual-level dy-
namics16, 19, 46 has shown some promise.

Our own efforts, however, have been to develop
methodologies for reducing computational de-
mand while carrying out CVT calculations with
multidimensional semiclassical tunneling correc-
tions directly from a sufficiently accurate level of

Ž .ab initio molecular orbital MO andror density
Ž .functional theory DFT without invoking any po-

tential fitting procedure.17, 18, 37, 47 ] 51 We attack this
problem from three separate fronts. First, we pro-
pose the use of a nonlocal DFT functional52 for
determining geometries, gradients, and Hessians
along the reaction coordinates. In particular, the
hybrid Becke half-and-half exchange53 with Lee]

54 Ž .Yang]Parr correlation functionals BHH-LYP , as
implemented in the Gaussian program,55 has been
found to give quite accurate geometries and fre-
quencies along the reaction path with a lower
computational cost than correlated levels of ab
initio MO theory and yet often yields comparable
accuracy, particularly for large systems. We have
discussed the accuracy of the BHH-LYP method at
length in previous studies.18, 47, 56 Note that devel-
opment of DFT functionals is currency a very
active research area. More accurate DFT function-
als, as they become available, may be used for
calculating reaction path information. Second, we
have developed a focusing technique to minimize
the number of calculated Hessians along the reac-
tion coordinate. Third, we have developed an in-
terpolation approach for improving the accuracy of
the energetics information along the reaction coor-
dinate from a minimal number of additional sin-
gle-point calculations at a higher level of theory
with a larger basis set. We will discuss the latter
two efforts in this study.

In addition to being an advanced research tool,
this program is also envisioned to be a useful
teaching tool for graduate-level kinetics courses.
For this purpose, a brief synopsis of the underly-
ing dynamical theories, namely transition-state
theory, canonical variational transition-state the-
ory, and various semiclassical tunneling approx-
imations, is provided. The accuracy and con-

vergence of the focusing technique and energy
interpolation procedure are then described. The
CH q H l CH q H reaction is used to ana-4 3 2
lyze these technical advances, and to demonstrate
the program usage.

Transition-State Theory

Transition state theory,57 ] 62 or activated com-
plex theory, is a well-developed formalism for
obtaining thermal rate constants by mixing the
important features of the potential energy surface
with a statistical representation of the dynamics.

In addition to the Born]Oppenheimer approxi-
mation, TST is based on three assumptions: First,
classically, there exists a surface in phase space
that divides it into a reactant region and a product
region. It is assumed that this dividing surface is
located at the transition state which is defined as
the maximum value on the minimum energy path
Ž .MEP of the potential energy surface that connects

Ž . Ž .the reactant s and product s . Any trajectory pass-
Ž .ing through the dividing surface or bottleneck

from the reactant side is assumed to form products
eventually. This is often referred to as the nonre-
crossing rule. Second, the reactant equilibrium is
assumed to maintain a Boltzmann energy distribu-
tion. Finally, activated complexes are assumed to
have Boltzmann energy distributions correspond-
ing to the temperature of the reacting system.
These activated complexes are defined as super-
molecules having configurations located in the
vicinity of the transition state.

Ž .The thermal rate constant, k T , for a bimolecu-
lar reaction A q B ª C q D is given by

k T qX
b ‡ ‡Ž . Ž .k s s exp yb DV 1
h N q qa A B

where k is Boltzmann’s constant, T is the temper-b
ature, N is Avogadro’s number, h is Planck’sa
constant, and b is 1rk T. DV ‡ is the classicalb
barrier height; that is, the potential energy differ-
ence between the reactants and transition state. qA
and q denote the respective total partition func-B

tions57, 58, 63 of the reactants with the translational
partition functions expressed in per unit volume.
The partition function of the activated complex is
qX and does not include translational motion along‡

the reaction coordinate because this is treated sep-
arately. The reaction symmetry number, s , repre-
sents the number of indistinguishable ways the
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reactants may approach the activated complex re-
gion. We will discuss forward and reverse reaction
symmetry numbers in more detail later.

Variational Transition-State Theory

Canonical variational transition-state theory
Ž . 64 ] 67CVT is an extension of transition state theory.
It minimizes the recrossing effects and provides a
framework for a more accurate description of
quantum tunneling effects to be considered.

CVT minimizes the recrossing effects by effec-
tively moving the dividing surface along the MEP
between the reactants and products so as to mini-
mize the rate. The reaction coordinate, s, is defined
as the distance along the MEP calculated in mass-
weighted Cartesian coordinates with the origin
located at the saddle point and is positive on the
product side and negative on the reactant side. For
a canonical ensemble at a given temperature T , the

Ž .canonical variational theory CVT rate constant
for a bimolecular reaction is given by:

C V T Ž . GT Ž . Ž .k T s min k T , s 2
s

where:

GT Ž .kT q T , s
GT Ž . Ž Ž .. Ž .k T , s s s exp yb V s 3M EPh N q qa A B

GT Ž .In these equations, k T , s is the generalized
transition-state theory rate constant where the di-
viding surface is perpendicular to the MEP and

GT Ž .intersecting it at s. q T , s is the partition func-
tion of the generalized transition state at s with
the motion along the reaction coordinate removed.

Ž . ŽV s is the classical potential energy theM EP
.Born]Oppenheimer potential energy along the

MEP with the zero of energy at the reactants. Note
that if the generalized transition state is located at

Ž . Ž .the saddle point s s 0 , eq. 3 reduces to that of
conventional TST.

CVT yields hybrid rate constants that treat mo-
tion along the reaction coordinate classically.
Quantum effects in this degree of freedom are
included by multiplying the CVT rate constant by

Ž .a ground-state transmission coefficient k T . Thus,
the final CVT rate constant is given by:

Ž . Ž . C V T Ž . Ž .k T s k T k T 4

Forward and Reverse
Reaction Symmetries

The reaction symmetry number,62, 68 ] 70 which
appeared in the rate expression, is the ratio of the
rotational symmetry numbers and is also known
as the statistical factor. It describes the number of
symmetry equivalent reaction paths. For bimolecu-
lar reactions, the forward reaction symmetry num-
ber is computed using the following formula:

Ž . Ž .NSYM Reactant 1 )NYSM Reactant 2
Ž .s s 5f Ž .NSYM GTS

where NSYM is the symmetry number associated
with the point group to which the considered
molecular configuration belongs. Similarly, the re-
verse symmetry number is given by:

Ž . Ž .NSYM Product 1 )NSYM Product 2
Ž .s s 6r Ž .NSYM GTS

For optically active molecules there is an extra
correction because each optically active isomer
represents distinct, but energetically equivalent,
states. Each optically active configuration should
be given an extra factor of 1r2.68

We use the CH q HCl l CH q Cl reaction3 4
as an illustrative example. From Table I71 we find
that the CH Cl complex belongs to the C point4 3v
group with NSYM s 3. The CH reactant belongs3
to the D point group with NSYM s 6. The HCl3h
reactant belongs to the C point group with`v

TABLE I.
Symmetry Number of Various Point Groups.71

Point group NSYM Point group NSYM

C , C , C 1 Atom 11 i s
C , C , C 2 D , D , D 42 2v 2h 2 2d 2h
C , C , C 3 D , D , D 63 3v 3h 3 3d 3h
C , C , C 4 D , D , D 84 4v 4h 4 4d 4h
C , C , C 5 D , D , D 105 5v 5h 5 5d 5h
C , C , C 6 D , D , D 126 6v 6h 6 6d 6h
C 7 C 87 8
D 16 S 28h 4
S 3 S 46 8
C 1 D 2`v `h
T, T , T 12 O, O 24d h h
I 60h
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NSYM s 1. The Cl product atom belongs to the
spherical orthogonal point group with NSYM s 1.
The CH product belongs to the T point group4 d
with NSYM s 12. The forward reaction symmetry
is then:

6)1
Ž .s s s 2 7f 3

and the reverse reaction symmetry is:

12)1
Ž .s s s 4 8r 3

For some reactions the transition state belongs
to a higher symmetry point group than other points
along the MEP. Consider for example the S ClyqN2
CH Cl reaction—the transition state has D sym-3 3h
metry, whereas points along the MEP only have
C symmetry. In this case, the lower symmetry3v
point group should be used, even in TST calcula-
tions, because the activated complexes in general
have lower symmetry with the transition state
representing a special case.

Tunneling Methods

The current TheRate version includes four dif-
ferent semiclassical methods for calculating the

Ž .transmission coefficients, k T ; namely the one-di-
mensional Wigner and Eckart methods and, the
multidimensional zero-curvature and centrifugal-
dominant small-curvature methods.27, 34, 64, 72 For
convenience, we label them as W, ECK, ZCT, and
SCT, respectively.

For TST rates, the Wigner and Eckart transmis-
sion probabilities are used. For CVT rates, the ZCT
and SCT transmission probabilities are utilized.
The Eckart method is a special case of the ZCT
calculation where the potential energy for tunnel-
ing is fitted by an Eckart function. Also, the ZCT
method is limiting case of the SCT method. These
methods are described in detail in what follows.

WIGNER TUNNELING CORRECTION

The Wigner correction for tunneling assumes a
parabolic potential for the nuclear motion near the
transition state64 :

1
‡ 2Ž . Ž .V x s V y mv x 9o 2

where V is the energy at the top of the barrier,o
and v ‡ is the imaginary frequency of the transi-

Ž .tion state. The Wigner tunneling correction, k T
then is given by:

1 2‡Ž . w x Ž .k T s 1 q "v b 10
24

where b is 1rk T. Thus, the Wigner correctionb
only requires the imaginary frequency at the tran-
sition state.

SMALL-CURVATURE TUNNELING

First, we approximate the effective potential for
tunneling to be:

3Ny7 1
Ž . Ž . Ž . Ž .V s s V s q q m "v s 11Ýd M EP i iž /2is1

where m is the vibrational state of mode i orthog-i
onal to the MEP. If all vibrational modes are in

Ž .their ground state, V s is equivalent to the vibra-d
tionally adiabatic ground state potential curve

GŽ .V s , which is used in calculations of tunnelinga
contributions to thermal rate constants. The trans-

Ž .mission coefficient, k T , is then approximated as
the ratio of the thermally averaged multidimen-
sional semiclassical transmission probability,

GŽ .P E , to the thermally averaged classical trans-
mission probability for scattering by the effective

Ž .potential, V s . If we denote the CVT transitiond
C V T Ž .state at temperature T as s T , then the quasi-)
� C V T Ž .4classical threshold energy, V s T , can be de-d )

Ž . Ž .noted as E T . The equation for k T then be-)
comes67:

`
yE r k TbŽ .P E e dEH

0Ž . Ž .k T s 12
`

yE r k Tbe dEH
Ž .E T)

Ž .Notice that the integral in the numerator of eq. 12
Ž .involves E above E T , as well as tunneling)

energies below this. Thus, the semiclassical trans-
Ž .mission probability, P E , accounts for both non-

classical reflection at energies above the quasiclas-
Žsical threshold and nonclassical transmission i.e.,

.tunneling, at energies below that threshold . Be-
Ž .cause of the Boltzmann factor in eq. 12 , tunneling

is by far the more important of these two quantum
effects.

The centrifugal-dominant small-curvature semi-
73 Ž .classical approximation SCT is a generalization

of the Marcus]Coltrin74 approximation in which
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the tunneling path is distorted from the MEP out
to a concave-side vibrational turning point in the
direction of the internal centrifugal force. Instead
of explicitly defining this tunneling path, the cen-
trifugal effect is included by replacing the reduced

Ž .mass by an effective reduced mass, m s , whiche f f

is used to evaluate the imaginary action integral
and thereby tunneling probabilities. Note that, in
the mass-weighted Cartesian coordinate system,
the reduced mass, m, is set equal to 1 amu. The
transmission probability at energy E is:

1
Ž . Ž .P E s 132u ŽE .� 41 q e

Ž .where u E is the imaginary action integral evalu-
ated along the tunneling path:

s2p rŽ . Ž . < Ž . < Ž .u E s 2m s E y V s ds 14'H e f f dh sl

The integration limits, s and s , are the reaction-l r
coordinate classical turning points defined by:

w Ž .x w Ž .x Ž .V s E s V s E s E 15d l d r

Note that the ZCT results can be obtained by
Ž . Ž .setting m s equal to m in eq. 14 . The effect ofe f f

the reaction-path curvature included in the effec-
Ž .tive reduced mass m s is explained in whate f f

follows.
The small-curvature tunneling amplitude corre-

sponds approximately to an implicit tunneling path
that follows the line of concave-side vibrational

Ž .turning point at a distance, t s , from the MEP in
the direction of the reaction-path curvature vector.
Let the distance along the small-curvature tunnel-

Ž .ing path be j and the curvature at s be k s ; then,
it can be shown by analytical geometry that:

2Ž .dt s2w Ž .x Ž .dj s 1 y a s q ds 16)½ 5ds

where:

Ž . < Ž . Ž . < Ž .a s s k s t s 17

The imaginary action integral along the small-
curvature tunneling path is defined as:

2p
Ž . < w Ž .x < Ž .u E s 2m E y V s j dj 18'H dh

Ž . Ž .By comparing eqs. 14 and 18 , the effective re-
duced mass is given by:

2Ž .dt s2Ž . w Ž .x Ž .m s s m 1 y a s q 19e f f ½ 5ds

However, to make the method generally applica-
Ž .ble, even when t s is greater than or equal to the

radius of cunature of the reaction path, we include
Ž .only the leading terms of eq. 19 , but not singular-

ities by the approximated form:

Ž .m s s m =e f f

22Ž . w Ž .x Ž .exp y2 a s y a s q dtrds� 4min ½ 1
Ž .20

The magnitude of the reaction-path curvature,
Ž . 75k s , is given by :

1r2Fy1
2Ž . w Ž .x Ž .k s s k s 21Ý i½ 5

is1

where the summation is over all generalized nor-
Ž . Ž .mal modes i s 1, 2, 3, . . . , F y 1 , and k s isi

the reaction-path curvature component of mode i
given by:

= V
TŽ . Ž .k s s yL F 22i i 2< <= V

where LT is the transpose of the generalized nor-i
mal mode eigenvector of mode i, F is the force

Ž .constant matrix Hessian matrix , and = V is the
gradient. Finally, within the harmonic approxima-

49Ž .tion, t s is given by :

y1r421r2 Fy1 2w Ž .x Ž .k " Ý k s v si i iŽ . Ž .t s s 23ž / ½ 5Ž .m 1 q 2mi

where v is the generalized vibrational frequencyi
of mode i in state m .i

ECKART TUNNELING CORRECTION

This methodology34 requires no ab initio calcu-
lations at points other than reactants, products,
and saddle point. It uses the zero-curvature
methodology developed in the previous section.
Ž .k T is evaluated with an approximated adiabatic
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ground-state potential energy curve, V G based ona
an Eckart function.

First, we approximate the classical potential en-
Ž .ergy, V s by an Eckart function whose param-M EP

eters are calculated from the classical potential
Ž . Ž .energies at the reactants R , saddle point ‡ , and

Ž .products P , and from the imaginary frequency.
This fit yields the range parameter:

2‡Ž .m v B
2 Ž .a s y 24‡ ‡Ž .2V V y A

where V ‡ is the classical barrier height, v ‡ is the
imaginary frequency, m is the reduced mass,

Ž .A s V s s q` , andM EP

‡ ‡ ‡'Ž . Ž .B s 2V y A q 2 V V y A .

V G is then approximated by another Eckarta
function, which is assumed to have the same range

Ž . Ž .parameter a and location of the maximum s s 0
Ž .as the classical V s approximation. This EckartM EP

function goes through the zero-point-corrected en-
ergies at the reactants, saddle point, and products.
This yields:

ay by
G Ž . Ž .V s s q q c 25a 21 q y Ž .1 q y

where:

aŽ syso . Ž .y s e 26
G Ž . G Ž . Ž .a s V s s q` y V s s y` 27a a

‡G ‡G ‡GŽ . Ž . Ž .'b s 2 DV y a q 2 DV DV y a 28a a a

G Ž . Ž .c s « s s y` 29int

and:

1 a q b
Ž .s s y ln 30o ž /a b y a

Here, DV ‡G is the zero-point energy correcteda
barrier at the saddle point, relative to reactants,

G Ž .and « s s y` is the sum of the zero-pointint
energies of the two reactants.

For most reactions, the zero-point energy correc-
tion often lowers the barrier. In this case, the range
parameter, a, for the V G curve should be larger;a
that is, the width of the V G curve is wider thana
that of the V curve. Thus, the approximation ofM EP

using the same a for V and V G curves oftenM EP a
overestimates the tunneling probability. We have
found that, in many cases, this error is compen-

Žsated for by the ‘‘corner cutting’’ effects see SCT
.methodology that are not included in this

methodology.

Vibrational-State-Selected Reactions

TheRate provides an option to calculate rate
constants with specific initial reactant vibrational
states.47, 76 To do this, the vibrational modes along
the reaction coordinate are first correlated as dis-

Žcussed later see ‘‘Technical Considerations’’ in
.Appendix A . A statistical vibrationally diabetic

model,76, 77 which assumes that the vibrational
modes preserve their characteristic motions as the
complex moves along the reaction coordinate, is
then used. In the statistical]diabatic model the
expression for the vibrational-state-selected rate
constants differ from the statistical form for the
thermal rate in the vibrational partition function
for the selected mode and in the potential energy

wcurve used for the tunneling calculations see eq.
Ž .x11 . The vibrational partition of the mode i in the
selected state m is given by:

Ž . yŽ1 r2qm." v i r k bT Ž .q m , T s e 31i

This partition function replaces the thermal distri-
bution partition function for the selected vibra-
tional mode.

The statistical]diabatic model is expected to
provide only semiquantatitive state-selected rate
constants because vibrational]vibrational and vi-
brational]rotational couplings were not included.
Nevertheless, it gives useful insight into vibra-
tional-state specificity of gas-phase polyatomic re-
actions.

Focusing Technique

The main goal of the focusing technique is to
minimize the computational cost of calculating
Hessians along the MEP while maintaining a rea-
sonable level of accuracy in the calculated rate
constants. This is done by focusing the computa-
tional efforts to regions of the MEP that are most
sensitive to the rate calculations. For reactions with
reasonable barriers, CVT rate constants are sensi-
tive to regions near the transition state, whereas
ZCT and SCT tunneling contributions show strong
dependencies not only on the barrier height, but
also on the barrier width and the reaction path
curvature. It is important to point out that regions
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with large reaction path curvature are often not in
the vicinity of the transition state. It is an empirical
fact borne out from our many applications using
the reaction path Hamiltonian22 approach that such
regions coincide with those having large curvature
in the geometrical parameters as functions of the
reaction coordinate.

Based on this observation, we have designed a
weighting function based on the sum of the nor-
malized curvatures of the bond distances, angles,
and dihedral angles as functions of the reaction
coordinate and the potential curve, each with dif-
ferent relative weightings. Thus, this function
weights the importance of different regions along
the MEP so as to obtain both accurate CVT rate
constants and SCT tunneling contributions. We
found that weight factors of 1.0 for bond distances,
0.5 for angles and dihedral angle, and 2.0 for the
potential energy curve work well for many tested
reactions. Users have the option to change these
factors in TheRate to suit different types of reac-
tions. For instance bond-breaking processes would
weight bond distances more than angles, but the
reverse is more appropriate for studying internal
rotation processes. The curvatures of geometrical
parameters as functions of the reaction coordinate
are determined from piecewise quadratic fits to
intervals of eight data points along the MEP using
single-value decomposition. This weighting func-
tion is used to distribute a given number of points
along the MEP for further Hessian calculations.

Energy Interpolation Technique

The accuracy of the potential energy along the
MEP is critical for quantitative prediction of rate
constants. However, it is often true that the Hes-
sian and geometrical information along the MEP
converges with respect to the level of theory and
basis set faster than the energy. It is therefore
desirable to find the geometries and Hessians at a
lower level of theory and then improve the ener-
getic information by performing single-point en-
ergy calculations at a higher level of theory andror
a larger basis set. Because these energy calcula-
tions are often computationally expensive, we have
developed an interpolation technique that only re-
quires a small subset of the Hessian calculation
points for more accurate single-point energy calcu-
lations.

Typically, the energy points are interpolated
directly from the single-point calculations. How-

ever, in our interpolation procedure, we instead
interpolate the energy correction to the potential
energy curve already obtained at the lower level of
theory. The energy difference between results from
the two levels of theory is calculated at selected
points of the Hessian grid. This correction term is
cubic spline interpolated, and then added back
into the potential energy result from the lower
level of theory. As discussed in what follows, by
using this technique, very few single-point energy
calculations are needed.

An automated method is provided in the TheR-
ate software for selecting a user-given number of
points along the MEP for single-point energy cal-
culations. Six to ten points are typically sufficient.

Note that the location of the maximum on the
more accurate potential curve is often shifted from
the saddle point calculated from the lower level.
The origin of the reaction coordinate, s, is then
shifted accordingly in CVT calculations, so proper
variational effects are calculated.

Model Reaction

To illustrate the use and effectiveness of these
techniques, we have performed calculations on the
CH q H l CH q H reaction using different4 3 2
Hessian and energy grids. Because the motivating
factor of this work is to elucidate the technique,
instead of predicting accurate thermal rate con-
stants, a low level of electronic structure theory
suffices. We refer to our previous work for accu-
rate rate calculations of this reaction.17, 47 Here we
used the STO-3G basis set in conjunction with

Ž .unrestricted Hartree]Fock UHF theory to calcu-
late the MEP information. The MEP was calculated
in mass-weighted Cartesian coordinates using a
step size of 0.01 amu1r2 bohr for 100 points on each
side of the transition state using the Gonzalez]
Schlegel method.78, 79

FOCUSING TECHNIQUE ANALYSIS

We used Hessian grids of 7, 10, 12, 15, 20, 25,
30, 40, and 50 points to test our focusing tech-
nique. Figure 1 shows how various geometrical
parameters change along the reaction coordinate
from the reactants to the products. Figure 2 shows
a second derivative analysis of the geometries and
placement of the Hessian grids with various totals.
There is some small noise in the graph near the
transition state due to inaccuracies in the MEP in
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this region. This is due to the linear first step off
the transition state that often causes some small
oscillatory motion for several subsequent steps
along the MEP. Also shown is a normalized energy
graph and the sum of the two energy and geome-
try weightings. As described in the Theory section,
the sum is used to bin weight distribute the Hes-
sian grid points. Figure 2 also shows the points
selected for further Hessian calculations with dif-
fering selected numbers of total Hessians.

Figure 3 shows the change in frequencies calcu-
lated in Cartesian coordinates of the reaction path
Hamiltonian versus the reaction coordinate. The
four graphs are constructed using 7, 15, 25, and 50
total Hessian calculations. Fifteen points are suffi-
cient to show all major features of the reaction,
whereas 25 points are needed to provide smooth
curves from reactants to products. Typically, be-
tween 20 and 30 frequency data points along an
MEP are sufficient to obtain smooth correlated
frequencies.

Figure 4 shows the curvature component of Bm f

coupling as a function of the reaction coordinate
using 50 Hessian calculations. The SCT ‘‘corner
cutting’’ effects are large in regions with signifi-
cant reaction path curvature. A comparison of the
B curves with the weighting curves show thatm f

our weighting scheme has correctly identified the
areas where the curvature components are large.

FIGURE 1. Plots of geometrical parameters of the H2
+ CH ª H + CH reaction versus the reaction3 4
coordinate. The dotted curve represents the HCH bond

( ) ( )angle degrees . Various bond lengths bohr are also
shown.

( )FIGURE 2. a Plot of locations of the Hessian grids
selected by the focusing technique for each given

( )number of Hessian points. b Plot of the weighting
curves. The normalized potential energy, the normalized
sum of the geometrical second derivative components,
and the total weighting are shown.

ŽNote the locations of the two peaks y0.30 and
1r2 .y0.45 amu bohr in the second derivative of the
Ž .geometries see Fig. 1 coincide with the peaks of

the B coupling.m f
Figures 5 and 6 show the convergence of CVT

rates as a function of the number of Hessian calcu-
lations. This reaction involves transfer of the light
hydrogen atom, so tunneling plays a significant
role. The CVT rate constants have converged to a
final result with only seven Hessian grid points.
Likewise, the CVT rate constant with the zero-
curvature tunneling correction also converges with
only seven Hessian grid points. SCT tunneling,

JOURNAL OF COMPUTATIONAL CHEMISTRY 1047



DUNCAN, BELL, AND TRUONG

FIGURE 3. Generalized frequencies of the H + CH2 3
reaction plotted versus reaction coordinate. The Hessian
grid for each graph is: upper left } 7; upper right } 15;
lower left } 25; lower right } 50.

FIGURE 4. B coupling of the H + CH reactionmf 2 3
plotted versus reaction coordinate.

FIGURE 5. Convergence of the CVT / SCT rate constant
at 300 K with respect to the number of Hessian grid
points. The solid line gives the percent difference from
the 50-Hessian rate. The dashed line is a log plot of the
actual rate constants.

however, requires at least 30 Hessian calculations
to converge to within 40%. An important implica-
tion of this is that if the CVT dividing surface
remains close to the transition state, and if tunnel-
ing is not important, accurate results may be ob-
tained with fewer Hessian calculations. As tunnel-
ing becomes more important, more Hessian points

FIGURE 6. Similar to Figure 5 except for different levels
of theory. The lower curve is the CVT rate. The middle
curve is the CVT / ZCT rate. The upper dashed curve is
the CVT / SCT rate.

VOL. 19, NO. 91048



THERATE PROGRAM

are needed to model the reaction path curvature
accurately.

ANALYSIS OF ENERGY
INTERPOLATION PROCEDURE

We have performed single-point energy calcula-
Žtions using MP2 Mo/ ller]Plesset perturbation the-

.ory with the 6-31G basis set. Figure 7 shows
a comparison of the UHFrSTO-3G and MP2r6-
31GrrUHFrSTO-3G potential curves, whereas
Figure 8 shows convergence of the MP2 energies
with increasing number of energy calculations. The
relative inaccuracy of the HF theory and STO-3G
basis set used in the low-level calculations gives
our energy interpolation scheme a severe test. The
Hartree]Fock geometries are quite different from
the geometry results of the more accurate MP2
calculation. In a practical sense, this means that the
potential energy peak is shifted noticeably as en-
ergy corrections are added. Even for this severe

Ž .case scenario, only 11 one third of Hessian points
additional energy calculations plus the stationary
points are required to converge the rate calcula-
tion. Figure 9 shows the rate convergence as the
number of energy replacement points increase.
Systems which use a better theoretical method for
calculating the MEP will require fewer energy
replacement points.

FIGURE 7. HF and MP2 // HF potential energies along
the reaction coordinate. The MP2 // HF energies were
obtained at every Hessian grid point. Both plots use the
30-point Hessian grid.

FIGURE 8. MP2 // HF potential energy curves
interpolated from a different number of single-point
energy calculations. The solid line represents an energy
interpolation from 7 single-point energies, the dotted line
from 11 points, and the dashed line from 15 points.

Conclusion

Computational and theoretical advances have
progressed sufficiently so that it is now possible to
calculate reaction rates directly from ab initio the-

FIGURE 9. Convergence of the CVT / SCT rate constant
at 300 K with respect to the number of single-point
energies. The solid line gives the percent difference from
the 30-point rate. The dashed line is a log plot of the
actual rate constant.

JOURNAL OF COMPUTATIONAL CHEMISTRY 1049



DUNCAN, BELL, AND TRUONG

ory without the intervening use of an analytical
potential energy surface. We have developed the

Ž .TheRate Theoretical Rates program to perform
such calculations efficiently. The number of calcu-
lations required for a variational transition-state
calculation with semiclassical tunneling calcula-
tions is gratifyingly small—fewer than would nor-
mally be required in constructing a high-quality
analytical potential energy surface. An intelligent
choice of points at which to calculate the frequen-
cies should require fewer than 30 Hessian calcula-
tions for the typical system. Improvement of the
energetics requires still fewer ab initio calculations,
which is convenient as these often require robust
levels of theory to obtain accurate theoretical rates.

We have used the CH q H l CH q H reac-4 3 2
tion to examine our Hessian focusing routine and
energy replacement technique. These results pro-
vide a baseline for the number of Hessian calcula-
tions and single-point energy calculations that are
required.

Finally, TheRate provides a user-friendly envi-
ronment making it a promising computational tool
for both teaching and research. For further infor-
mation on obtaining TheRate, please see our web
page at http:rrwww.usi.utah.edurresearchr The-
Rate.

Appendix A

TECHNICAL CONSIDERATIONS

Vibrational mode correlation. A new vibrational
mode correlation routine is utilized here. The tra-
ditional way for correlating modes uses mode]
mode overlap between adjacent points on the
MEP.23 For the most part, this procedure is very
successful for small systems. For larger systems, in
which multiple mode crossings may occur within
a small interval of the reaction coordinate, this
overlap criterion is not always sufficient to dis-
criminate between modes. This problem is respon-
sible for the apparent avoided crossings between
modes in plots of generalized frequencies versus
reaction coordinate.

The new routine solves this problem by calcu-
lating additional overlap matrices not only be-
tween adjacent points but also between points up
to two reaction coordinate positions apart. If the
adjacent overlap fails to achieve minimum correla-
tion levels, the routine attempts to correlate either
forward or backward up to a maximum of two
reaction coordinate positions to make a better
choice.

Focusing technique. This range of data points de-
faults to 8 and may be changed by the user. As
mentioned earlier, the first few steps along the
MEP from the transition state are somewhat er-
ratic. Thus we interpolate data points in the transi-
tion-state region rather than use the raw data. The
number of data points to be interpolated may be
changed by the user. The default value is 2.

MEP Calculations. As the MEP approaches the
reactant and product regions, the gradient be-
comes small. This directly affects the stability of
the numerical techniques used to find the MEP,
and as a result small oscillations in the geometrical
parameters often occur. The numerically calcu-
lated derivatives in the tunneling calculations are
especially susceptible to these errors. However, it
is not necessary to integrate the MEP far into these
regions for rate calculations.

The range of the MEP needed for rate calcula-
tions varies depending on the type of reaction. For
typical reactions involving transfer of a light parti-
cle, tunneling is often quite significant and larger
MEP ranges are needed to ensure inclusion of
regions having large curvature. However, for reac-
tions where tunneling is anticipated to be small,
smaller ranges of MEP values are sufficient. With
the use of the extrapolation to the reactant and
product limits described next, the MEP range in-
cluding the top half of the barrier is normally
sufficient.

Extrapolations to reactants and products. Calcula-
Ž .tion of the u E integral requires knowing the

classical turning points, s , and s , at the energy,r l
E. As discussed in the previous subsection, it is not
necessary to integrate far into the reactant and
product channels. However, to converge the tun-
neling probability, the MEP is extrapolated to the
reactant and product stationary states using an
exponential form given by:

Ž g s . Ž .E s V 1 q ae 32

Ž .where V is the energy at the reactant or product
and the variables g and a are adjusted so the
curve and its first derivative are continuous at the
connecting point.

Smoothing the m . Small oscillations in the nu-e f f

merically produced MEP may lead to noise in the
calculated reaction path curvature and, subse-

w Ž .xquently, in m eq. 20 . We compensate for thise f f
effect by removing high-frequency oscillations in
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the m data. This is done using a fast Fouriere f f

transform low-pass filter. The endpoints are as-
signed the value of m before the Fourier transform
to resolve problems with the one-sided numerical
derivatives at these points.

Integration. Numerical integrations are per-
formed using a globally adaptive Gaussian]Kon-
rad quadrature scheme.80 This same approach is

Ž . Ž .used for integration of both of eqs. 12 and 14 .
The globally adaptive procedure starts with a 21-
point Konrad quadrature integration and, if the
estimated error is too large, progressively subdi-
vides the intervals until the estimated error con-

Ž .verges below an acceptable precision of 1.0E-3 .

Appendix B

PROGRAM USAGE AND CONSIDERATIONS

Supported platforms and availability. TheRate is
Java based and runs on any platform with JDK
1.1.5, or better, which is freely available on most
Unix platforms, as well as Macintosh and PC
compatibles. A network connection is required.

Associated software. TheRate is currently config-
ured to use Gaussian-94 as the basis for all elec-
tronic structure calculations. Interfacing TheRate
with other electronic structure packages is easily
done by rewriting the parsing classes. If interested,
please contact: Truong@chemistry.utah.edu
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