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Monte Carlo Method
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ABSTRACT: We introduce error weighting functions into the perturbative
Monte Carlo method for use with a hybrid ab initio quantum

Ž .mechanicsrmolecular mechanics QMrMM potential. The perturbative Monte
Carlo approach introduced earlier provides a means to reduce the number of
full SCF calculations in simulations using a QMrMM potential by evoking
perturbation theory to calculate energy changes due to displacements of an MM
molecule. The use of weighting functions, introduced here, allows an optimal
number of MM molecule displacements to occur between the performance of the
full self-consistent field calculations. This will allow the ab initio QMrMM
approach to be applied to systems that require more accurate treatment of the
QM andror MM regions. Q 1998 John Wiley & Sons, Inc. J Comput Chem 19:
1632]1638, 1998
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Introduction

he vast majority of reactions that are of inter-T est to chemists are those that occur in the
condensed liquid phase, where interactions with
the solvent can play a significant role in influenc-
ing the behavior of molecules as well as the reac-
tions in which they participate. Theoreticians face
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special challenges as they attempt to model these
condensed-phase chemical reactions. Quantum-

Ž .mechanical QM methods have existed for some
time that are capable of answering, in a quantita-
tive way, questions concerning condensed-phase
processes.1, 2 However, even the least computa-
tionally demanding of these methods is still far too
expensive for the large number of molecules that
need to be included in a calculation involving the
liquid phase.

Computational methods have been introduced
that allow for a less rigorous, albeit computation-
ally achievable, study of condensed-phase sys-
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tems. One common methodology is the use of
Ž .empirical molecular mechanical MM force fields

Ž .in molecular dynamics MD and Monte Carlo
Ž . 3 ] 5MC simulations. In spite of the approxima-
tions included in these empirical functions, valu-
able insight into the interactions that occur be-
tween molecules in solution has been obtained.
However, the use of MM force fields has short-
comings. Current MM force fields are not capable
of representing the interactions that constitute the
very nature of a chemical reaction, specifically, the
large changes in electron density which occur dur-
ing chemical bond breaking and forming.

Recently, a general method has been introduced
that shows promise when used to investigate con-
densed-phase reactions. By combining QM and
MM techniques, its possible to perform calcula-
tions on atoms or molecules, which have a QM
representation, in the field of MM molecules that
represent the solvent environment. These com-
bined QMrMM methods6 ] 9 allow for a reduction
in computational cost relative to standard QM
methods, while allowing for the investigation
of chemical reactions and polarization effects in
solution.

The QM portion of the solution may be repre-
Ž .sented using an ab initio molecular orbital MO

representation. These calculations can be systemat-
ically improved by using larger basis sets or more
accurate, correlated methods.1, 2 However, most
applications of QMrMM methods use a semiem-
pirical representation of the QM region. These have
been used extensively to investigate solvated sys-
tems, as well as for studying large molecules of
biological interest.10 This is due to the large num-
ber of electronic structure calculations required for
sufficient sampling of the configuration space us-
ing conventional MC or MD methods. Semiempiri-
cal MO methods are very useful, however, they do
have many limitations. For instance, they cannot
be used for systems for which parameters do not
exist, and their accuracy for modeling chemical
reactions is often questionable. Thus, it is desirable
to treat the QM region at an ab initio MO or DFT
level.

In a typical MC sampling procedure, only one
atom or molecule is displaced at each Monte Carlo
step. This differs from MD simulations where all
the atoms or molecules of the system are moved
with the solution of Newton’s equations at each
time increment. For the displacement of a solvent
molecule in a MC simulation that does not have a
large effect on the solute wave function, it is possi-
ble to calculate the corresponding energy change

using the wave function from the previously ac-
cepted MC step without the need of performing a

Ž .full self-consistent field SCF calculation again.
This will significantly reduce the number of SCF
calculations required. This method is called pertur-
bative MC by Truong and Stefanovich,11, 12 and has
been employed in studies using AM1rMM13 as
well as DFTrMM-coupled potentials.14

It is possible to further increase the efficiency
associated with the perturbative MC method by
introducing error weighting functions that will al-
low for an optimal number of MM solvent dis-
placements between the performance of the QM
portion of the simulation in a controlled manner.
Due to the fact that most of the computational
demand associated with a combined QMrMM
simulation is associated with the QM calculation,
increasing the number of solvent displacements
which do not require calculations that update the
solute wave function will produce a large im-
provement in the overall performance of the
method. Analyzing the accuracy and efficiency of
the new procedure is the focus of this article.

qŽ . Ž .Results on the Na H O n s 6, 14, 125 systems2 n
will be reported. Furthermore, in previous articles
we have provided a theoretical basis and system-
atic assessment of the accuracy of the perturbative
MC method.11, 12 No attempt was made to investi-
gate the accuracy of the calculated solvent struc-
ture using this approach. We therefore present in

Ž .this article radial distribution functions rdf’s ob-
qŽ .tained for the different Na H O systems.2 n

Theoretical Background

Details concerning the theoretical background
for the combined QMrMM method have been
described previously.6 ] 9 For a solution, the effec-
tive Hamiltonian describing the system can be
separated into three terms:

ˆ ˆ 0 ˆ ˆ Ž .H s H q H q H 1eff U U ] V V ] V

ˆ 0where H is the portion of the effective Hamilto-U
nian that describes the solute molecule which

ˆhas a QM, in vacuo, representation. H is theU ] V
ˆsolute]solvent interaction Hamiltonian, and HV ] V

is the Hamiltonian describing interactions between
solvent molecules in the MM region. As far as the
perturbative MC11, 12 approach is concerned, the
portion of the effective Hamiltonian that is of
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ˆinterest is H , and is given by:U ] V

q q Za a A
Ĥ s y qÝÝ ÝÝU ] V R Ria A aa ai A

A Ba A a A Ž .q y 2ÝÝ 12 6ž /Ž . Ž .R RaA a A a A

where the first two terms represent electrostatic
interactions between the solvent interaction sites,
and the solute electrons and nuclei, respectively.
The last term describes the dispersion or van der
Waals interactions between solute and solvent. The
indices i and a run over the electrons in the QM
region, and the interaction sites on each of the MM
molecules, respectively, while index A runs over
the nuclei in the quantum region.

The total energy for the solvated system is ex-
pressed as:

qa0ˆ² < < :E s C H q y CÝÝtot U Riaai

q Za A vdW Ž .q q E q E 3ÝÝ U ] V V ] VRA aaA

where the first term is the expectation value of the
portions of the effective Hamiltonian, which are
functions of the electronic coordinates; the second
term is the contribution to the total energy that
arises due to interactions between the solute nuclei
and the solvent interaction sites; the third term
describes the dispersion interactions between the
solute and the solvent; and the last term is the
energy that arises from interactions between classi-
cal solvent molecules in the MM region.

Using the perturbative MC approach,11 the main
ˆconcern is with the changes in H that occureff

corresponding to a change in the position or orien-
tation of a solvent molecule due to an accepted
MC step. Specifically, it is the portion of the effec-
tive Hamiltonian that describes interactions be-
tween electrons in the QM solute and the interac-
tion sites of the classical solvent molecules, that is
of interest. When a solvent molecule m is dis-

ˆplaced, this portion of H takes the form:eff

1 1
Ž .DH s y q y 4Ý Ý Xa ž /R Ri a i ai agm

Ž .If the perturbation given by eq. 4 is small, the
energy change corresponding with the displace-
ment of solvent molecule m can be approximated

within first-order perturbation theory by:

1 1
² < < : Ž .C y q y C 5Ý Ý Xa ž /R Ri a i ai agm

where C is the solute wave function from the
previously accepted full SCF MC step. The change
in the total energy for such a perturbative MC step
can be expressed as:

1 1
² < < :D E s P m y q y nÝ Ý Xtot mn a ž /R Ri a i amn agm

1 1
q q Z yÝÝ Xa A ž /R RA a A aaA

vdW Ž .q D E q D E 6U ] V V ] V

where P is the density matrix element betweenmn

< : < : vdWthe basis functions m n , and D E and D EU ] V V ] V
are the changes in the solute]solvent dispersion
energy and solvent]solvent interactions, respec-

Ž .tively. Eq. 6 indicates that the main computa-
tional cost associated with calculating D E is thetot
evaluation of m = k number of one-electron inte-
grals, where k is the number of basis functions.
The perturbative MC approach thus leads to a
significant reduction in the computational ex-
pense, relative to performing a full SCF calculation
at each displacement of a solvent molecule. Updat-
ing the solute wave function, through the perfor-
mance of a full SCF calculation, needs to occur
only after a certain number of perturbative moves
to avoid accumulation of errors.

The question that needs to be addressed is,
‘‘What is the maximum number of perturbative
moves that can be performed between SCF calcula-
tions before accumulating an error exceeding a
given limit?’’ To answer this, we define the error
function:

previous current Ž .Error ' E P y E P 7Ž . Ž .mn mn

where the first term is the energy obtained using a
density matrix from the SCF calculation corre-
sponding to the previously accepted MC displace-
ment of a solvent molecule, and the second energy
term is the energy that would be obtained if the
density matrix was calculated for the current con-
figuration of solute and solvent. This error should
decrease sharply as a function of the distance be-
tween the QM solute and the MM solvent molecule
being displaced during an MC step. This distance
dependence can be approximated using classical
electrostatics by recalling the formula for the elec-
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tric field generated by a solute molecule, at some
point in space where a classical, MM solvent
molecule resides:

N q© i © Ž .F s v 8Ý i3riis1

where r is the distance between the solute species
©and the solvent molecule, and v is the unit vectori

oriented along this distance. The dipole experi-
enced by a solvent molecule in the presence of this
field can be calculated by taking the vector prod-
uct of the expression for the electric field and a,˜
the polarizability of the solvent molecule:

N qi© © Ž .m s a ? v 9˜ Ý i3ž /riis1

The energy that arises due to the polarizing effect
of some configuration of solvent molecules is given
by:

N N1 q qi i© © Ž .E s y v ? a ? v 10˜Ý Ýpol i i3 3ž /ž /2 r ri iis1 is1

which is the expression for the electric field given
Ž .by eq. 8 dotted into the dipole moment given by

Ž .eq. 9 and multiplied by a factor of y1r2.
Ž .The error described by eq. 7 is nothing more

than the change in the total energy due to the
change in the position of an MM solvent molecule.

D E
Ž .Error s 11

D r

Ž .Applying this idea to eq. 11 , and taking the limit
of the change in the energy as the change in r goes
to zero, we have an approximate expression for the
distance dependence of the error:

1
Ž .Error A 127r

This expression for the error gives the distance
dependence for the function used for the weight-
ing of the displacements of individual solvent
molecules. Due to the short-range nature of this
error weighting function, it is not very sensitive to
the type of solute. Thus, for a given solvent type,
we use a simple fitting procedure as given in what
follows to obtain the coefficient for this function.
First, we perform calculations for the interaction of
an ab initio Liq with an empirical TIP3P15 water
molecule, in which the exact error defined in eq.
Ž .7 was obtained. The relative geometries of the

Liq and the H O molecules were C ,16 with the2 2V
Liq nearest to the O atom of the H O, and the2
H O rotated 458 in the plane of the Liq and H O,2 2
relative to this C geometry. A least-squares fit to2V
a function, which has the general ry7 form, was
then performed. In actual application, this error is
allowed to accumulate until it passes a given limit,
at which point a full SCF calculation is then per-
formed. This procedure was implemented into our
local interface between G92rDFT17 and BOSS 3.6.18

Computational Details

To test the performance of the new procedure, a
series of QMrMM simulations were carried out on

qŽ . Ž .the Na H O n s 6, 14, 125 systems. In this2 n
study, no solute displacements were performed
and no changes in the volume were allowed. For
systems that require displacing the solute or
changing the volume, full SCF calculations must
be performed corresponding to either scenario. Us-

Ž .ing the error defined in eq. 7 , an error limit of
0.01 kcalrmol was allowed to accumulate between
full SCF calculations. Simulations were performed
at 258C and 1 atm. Metropolis sampling was used
in all simulations and, with the 125 water system,

19 Ž 2preferential sampling was used with 1r r q
.WKC weighting, where WKC s 100. For the 125-

water-molecule case, a solute]solute interaction
˚cutoff distance of 10.0 A was used.

Naq was treated quantum mechanically at the
HF, MP2, and DFT levels using the 6-31GU basis
set. For the DFT representation we used the combi-
nation of the nonlocal Becke20 exchange, and the
Lee]Yang]Parr21 correlation functionals.

All solvent H O molecules were treated by the2
˚Ž .three-site TIP3P model d s 0.9572 A, a s 104.528 .

Although empirical parameters exist for the Naq,
which have been used successfully in many MM
simulations, it has been understood that new van
der Waals parameters must be fitted for use in
QMrMM simulations. However, no error analysis
was given for the common practice8 of using MM
van der Waals parameters for solute in QMrMM
simulations. To gain some insight into the results
obtained with the use of different vdW parameters
for Naq in QMrMM simulations, the empirical
OPLS parameters22 were used, as well as the val-
ues reported by Freindorf and Gao,23 which were
fitted for use in ab initio QMrMM simulations.

For each cluster, standard 1.0 M configuration
MC simulations were performed to equilibrate the
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system. Our GaussianrBOSS interface, including
the implemented weighting functions, was used to
run the simulations, with 2.0 = 105 configurations
sampled for averaging. The average number of
water displacements that occurred between the
SCF portion of the simulation was calculated to
illustrate the increase in the efficiency that is expe-
rienced for different clusters, while maintaining an
error accumulation below 0.01 kcalrmol in total
electronic energy.

Results and Discussion

Average numbers of solvent displacements be-
tween successive SCF calculations for the different
QM methods and vdW values are shown in Table
I. The distance dependence of the error defined by

Ž .eq. 7 is illustrated by the increasing number of
average moves, mean NMOVE, as the number of
water molecules increases. For all three systems,
the OPLS vdW values give mean NMOVE values
that are smaller than the results obtained using the
Gao values for the same QM method and cluster
size. Due to the fact that the vast majority of the
computational demand associated with the QMr
MM method involves SCF calculations of the QM
portion of the simulation, the data in Table I repre-
sent, qualitatively, the increase in the efficiency
that the weighting functions provide in connection
with the perturbative MC method. While this in-
crease in efficiency is relative to a simulation in
which the performance of SCF calculations occurs
with each displacement of a solvent molecule, it is
important to make a few points. First, the use of
perturbation theory to improve the efficiency of
QMrMC simulations has also been demonstrated
in our earlier studies and in the work of Tunon et
al.14 and Gao.13 These studies involve a much
larger number of SCF calculations, which update
the electron density of the solute region. For exam-

TABLE I.
Average Number of Solvent Displacements, Mean

+( )NMOVE, for Na H O .2 n

+ + +( ) ( ) ( )QM / vdW Na H O Na H O Na H O2 6 2 14 2 125

HF / Gao 135 280 2221
HF / OPLS 103 217 1332
MP2 / Gao 141 285 1999
MP2 / OPLS 103 211 1665
DFT / Gao 135 284
DFT / OPLS 105 218

ple, Tunon imposed conditions to the simulation
to assure that no more than 10 MC steps were
made between the DFT calculations. While this
also increases the efficiency of the simulation rela-
tive to performing the SCF calculation with each
step, it does not allow for the performing of an
‘‘optimal’’ number of MC moves. The weighting
functions allow for over 100 solvent displacement
in a water cluster consisting of six water molecules.
Even with a cluster of this small size, many more
perturbative steps can be carried out, without in-
troducing large amounts of error.

Ž . qThe binding enthalpies D H for the Nabind
Ž . qŽ . qŽ .H O , Na H O , and Na H O systems2 6 2 14 2 125
are listed in Table II. The D H values obtainedbind
using the OPLS values for the vdW parameters for
the solute]solvent interactions are too negative for

qŽ . qŽ .both the Na H O and Na H O systems,2 6 2 14
when compared with standard MC results pub-
lished by Jorgensen and Severance,24 and with
corresponding experimental values.25 No MM or
experimental data are available for Naq solvated
by a cluster consisting of 125 water molecules.

The different results for the use of the OPLS and
Gao values for the vdW parameters illustrate some
important points. Because MM simulations do not
represent electrons on either the solute or solvent
species explicitly, these MM force field parameters

TABLE II.
+( )Enthalpies of Binding yD H for Na H Obind 2 6

+( )and Na H O Clusters.2 14

Gao OPLS
Method parameters parameters

+( )Na H O2 6
aHF 103.8 112.8

MP2 102.7 113.0
DFT 104.2 112.0

bMonte Carlo / OPLS 105.5
cExperiment 96.4

+( )Na H O2 14
HF 175.9 184.4
MP2 172.3 184.0
DFT 173.3 185.1

bMonte Carlo / OPLS 177.4
+( )Na H O2 125

HF 1016.2 1054.3
MP2 980.2 1073.0

aAll binding enthalpies are in kcal / mol.
bRef. 23. The reported uncertainties in DH are "0.3
kcal / mol.
cRef. 24.
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are not acceptable for use in a QMrMM simula-
tion. The QMrMM representation allows for the
polarization of the solute region in the presence of
the field generated by the solvent molecules. This
contribution to the total interaction energy is dou-
ble counted when OPLS parameters are used in a
QMrMM simulation. Therefore, using the OPLS
values gives results that describe Naq]water clus-
ters that have inaccurately too strong D H , cor-bind
respondingly short solvent]solvation shell dis-
tances, and lower values for the average number
of solvent displacements between SCF calcula-
tions. The latter of these results is evidence of the
tighter packing of all of the water molecules around
the Naq.

The solvent structures surrounding the Naq are
illustrated by the rdf’s of Figures 1]3. Rdf’s ob-
tained for the different levels of quantum theory
and similar vdW values give similar results and,
for this reason, Figures 1]3, which show results
from the MP2 representation of the solute, are
given as an illustration of the results for all the
different representations of Naq.

Figures 1]3 show comparisons of the rdf’s ob-
tained using the Gao and OPLS parameters for the

qŽ . qŽ . qŽ .Na H O , Na H O , and Na H O sys-2 6 2 14 2 125
tems. The position of the first maximum obtained

qŽ .using the Gao parameters for all Na H O sys-2 n
tems compares favorably to results obtained using
classical simulation techniques for the same
Naq]H O cluster size,26 and for dilute solutions of2

q 27 qŽ .Na in H O. Specifically, for the Na H O2 2 125

FIGURE 1. Calculated Na+]O radial distribution
+( ) +function for Na H O cluster. For all figures, the Na2 6

is represented at the MP2 level of theory, and the dashed
line represents the rdf obtained using the OPLS values
for the vdW parameters. The solid line represents the
results obtained using the Gao values. The reference
density for the rdf’s is the bulk density.

FIGURE 2. Calculated Na+]O radial distribution
+( )function for Na H O cluster.2 14

system, the position of the first peak calculated
with the Gao parameters agrees much better with
experimental values,28 which were reported to be

˚2.38 and 2.4 A, than do the results obtained using
the OPLS parameters. The Gao results also com-
pare favorably with values obtained from classical
simulation techniques, which range from 2.29 to

˚ 292.35 A.

Conclusions

It has been demonstrated that use of the pertur-
bative MC method with an error weighting func-
tion can increase the efficiency of QMrMM simu-
lations. The increase in the efficiency is greater for
systems consisting of larger numbers of solvent
molecules due to the distance dependence of the
weighting function. The mean NMOVE values il-
lustrate this increase in efficiency for the

FIGURE 3. Calculated Na+]O radial distribution
+( )function for Na H O .2 125
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qŽ .Na H O systems of different size. This increase2 n
in efficiency will allow for the investigation of
processes of increased size and computational
rigor. In the future, we intend to use this approach
to investigate more complex systems. This increase
will also make it possible to move away from
classical representations of the solvent, which are
the result of fitting parameters to empirical data
and toward more rigorous representations such as

Ž . 30the effective fragment potential EFP .
We caution against the use of MM vdW param-

eters in QMrMM simulations. In QMrMM simu-
lations, where the QM solute is allowed to be
polarized, using MM force fields will double count
these interactions. This will overestimate binding
enthalpies, with corresponding solvation shells that
have small distances between solute and solvent.
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