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Abstract

A methodology is presented which allows for self-consistent treatment of lattice polarization effects in ab initio
embedded cluster calculations of defects in insulating crystal. This approach uses molecular mechanics or shell model
potentials for classical ions near the quantum cluster and a modification of the dielectric continuum method for polarization
of the rest of the crystal. Anion interstitial and vacancy in CaF crystal have been considered as test cases for the proposed2

method. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Ab initio embedded cluster method is a valuable
tool for theoretical studies of defects and physico-
chemical processes in the bulk and on the surface of

Ž wcrystals for examples and references, see Refs. 1–
x.4 . In this approach, a defect or a surface active site

is modeled as a cluster treated quantum-mechani-
cally. This cluster is embedded in the potential pro-
duced by the rest of the crystal lattice. This potential

Ž .normally includes Coulomb or Madelung , ex-
change and repulsion contributions. In many in-
stances, especially for charged defects, polarization
of the lattice is also an important part of the embed-
ding potential. Although the basic principles of treat-
ment of embedded clusters in the self-consistently

w xpolarized lattice are well known 5–7 , the problem
is so complex that approximations are certainly
needed.
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The main idea which makes the solution of this
problem computationally feasible is to divide the
infinite crystal containing a point defect into three
regions as shown in Fig. 1a. Region I is quantum-

Žmechanical cluster shown as empty circles in Fig.
.1a where the electron configuration and positions of

ions may differ significantly from those in the ground
state of the perfect crystal. Region II is the surround-
ing classical region, where the ions are represented

Ž .as classical particles black circles in Fig. 1a , e.g.,
rigid ions or cores and shells, interacting with each
other by means of pair potentials. These ions may be
arbitrarily displaced from their lattice sites and polar-
ized. Region III is the crystal remainder, where
displacement and polarization of ions are usually
treated as point dipoles using the continuous or

w xMott–Littleton approximation 8 . These general
ideas have been implemented in a number of com-
puter codes allowing for quantum treatment of a
crystal defect with self-consistent lattice polarization
w x w x9–11 . The ICECAP computer code 9 employing
accurate ab initio treatment of the cluster wave func-
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Ž . Ž .Fig. 1. Two different approaches for treatment of crystal polarization in zone III: a traditional Mott–Littleton method; b dielectric
continuum approach.

tion has been successfully used in many studies of
Ž w x.defects in crystals for reviews, see Refs. 3,12 .

Despite this progress, some problems regarding ac-
curacy, applicability and computational efficiency
have not been yet solved. In particular, in its current
version, ICECAP can use only Hartree–Fock method
with Rayleigh–Schrodinger many-body perturbation¨
correction to calculate electronic structure in region
I; due to unavailability of analytical energy gradi-
ents, geometry optimization in region I is still a
tedious job.

Our goal here is to develop a computationally
practical method for treating lattice polarization and
the electronic structure of the cluster in a self-con-
sistent manner. Such a method should allow ab initio
representation of the cluster wavefunction with good
basis sets and accurate treatment of the electron
correlation, e.g., via MP2, non-local density func-
tional methods or any multiconfigurational methods.
In addition, it should have analytical energy deriva-
tives with respect to positions of cluster atoms and
the possibility to treat defects in arbitrary lattices
including defects on crystal surfaces. Obviously, none
of existing computational methods satisfy these strict
requirements. A motivation for our interest in this
problem comes from our studies of chemical pro-
cesses at solid–liquid interfaces and in zeolites. With

w xrecently developed CECILIA model 13,14 we were
able to model realistically the influence of the sol-

vent on interfacial reactions. As many crystals of
interest have highly polarizable lattices, e.g., dielec-
tric constant of TiO is even higher than that of2

water, the treatment of the crystal lattice polarization
on the same footing as that of the solvent becomes
important.

In Section 2, we describe the proposed method
that satisfies the above requirements. In Section 3 we

Ž .test this model by applying it to CaF fluorite2

crystal. This crystal has been used as a model sub-
stance in a variety of experimental and theoretical
studies of radiation damage of insulating crystals.
Similarly to the alkali halides, CaF crystal is highly2

ionic and has a close-packed crystal structure. In
such cases the embedded cluster approach is known
to be very accurate. Therefore, we can concentrate
on the description of polarization effects. We will

w xtest our method by comparing to experiment 15,16
formation energies of the anion vacancy and intersti-
tial. Being charged defects, they induce significant
polarization of the surrounding lattice.

2. Methodology

ŽThe physical model used in our approach see
. ŽFig. 1b is similar to that described above e.g., in

w x.the ICECAP model 9 . The most significant differ-
ence is in the way we treat region III. Instead of
representing polarization in this region as an array of
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Fig. 2. A piece of the CaF crystal lattice showing details of our2
Ž .embedded cluster model see text .

discrete dipoles, we use the dielectric continuum
approach which assumes that region III is a uniform
medium characterized by a dielectric constant ´ and
separated from regions I and II by a sharp boundary.
This approximation neglects the atomistic structure
of region III and tensor character of its dielectric
properties. This results in some loss of accuracy as
compared to ICECAP-like techniques. However, these
simplifications yield several computational advan-
tages. In particular, geometry optimizations can be
routinely performed due to the availability of analyti-
cal energy derivatives. The algorithms for construc-
tion of the boundary, representation of the polariza-
tion by apparent surface charges, and inclusion of the
non-linear polarization potential in the Hamiltonian
of the region I have been well developed for studies

w xof solvent effects in liquids 17 . In this Letter we
w xwill use the GCOSMO dielectric continuum model 18

for treating polarization in region III. It is worth to
mention that the possibility to use the simplest di-

Želectric continuum model a point charge in the
.spherical cavity with a properly fitted radius to

represent crystal polarization has been demonstrated
w x w xby Mott and Littleton 8 and also in Refs. 19,20 .

Although the method outlined above is quite gen-
eral, below we use the CaF crystal as an example to2

illustrate all aspects of the model in a typical applica-
Ž .tion setting. The quantum cluster region I

w xq10Ca F used in this study is shown by hatched6 2

balls in Fig. 2. In order to reduce the number of
active electrons and dimension of the quantum prob-
lem we employed a standard large core LANL pseu-
dopotential with double-zeta basis set for Ca2q ions
w x Ž . w x21 while all-electron D95q 2d basis set 22 was
used for F ions. We have used Hartree–Fock approx-
imation for the cluster wave function with MP2
electron correlation correction added to the total
energy.

For anion vacancy calculations, one of cluster’s
Fy ions has been removed and the classical zone II
was made of ten Fy ions marked with ‘x’ in Fig. 2.
For interstitial calculations, an additional quantum
Fy ion has been placed in the interstitial site and two

y Ž .more classical F labelled with ‘q’ in Fig. 2 have
been added to the zone II. The energy of the classical
region II was calculated in a rigid ion approximation.
Born–Mayer analytical form was chosen for the pair

Ž 2q y.interaction potentials between ions Ca and F in
Ž 2q 9q.region II and ionic cores or nuclei Ca and F in

region I. The parameters of the potentials listed in
Table 1 have been derived from calculations of the
perfect cluster with one quantum Fy ion. They sat-

w x Ž .isfy the following criteria 2 : 1 the equilibrium
geometry of the cluster simulating the perfect lattice
coincides with the corresponding fragment of the

Ž .infinite lattice; 2 the total energy of the cluster
behaves symmetrically with respect to displacements
of the ions in the equivalent directions both inward

Table 1
Parameters of short-range pair interaction potentials for CaF2
Ž . Ž . Ž . y6atomic units , f r sC exp yC r yC rab 1 2 3

a b C C C1 2 3

y1 q2F Ca 136.78 2.0376 –
q9 q2F Ca 302.09 2.2744 96.670

q2 q2Ca Ca 2059.2 2.7007 161.42
y1 q9F F 109.97 2.0740 57.704
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and outward from the border of the cluster. In this
way the inequivalence in the interaction of the ions
on the cluster boundary with the quantum-mechani-
cal ions inside the cluster and with the classical ions
outside the cluster is corrected.

The crystal lattice outside regions I and II de-
scribed above was attributed to region III. 49 nearest
Ca2q ions in this region acted on electrons localized
in the quantum cluster by means of the LANL

w xpseudopotentials 21 . Use of the nonlocal pseudopo-
Žtentials as opposed to simple point charge approxi-
.mation for positive ions is essential to avoid un-

physical delocalization of the cluster wave function.
The rest of the zone III was treated in the point

Ž .charge approximation Q sq2, Q sy1 . TheCa F

contribution to the Madelung potential from 312 ions
˚lying within 12 A distance from the quantum cluster

was calculated explicitly. The potential from the rest
of the infinite lattice was modeled by 240 point

˚charges situated on the sphere of radius 6 A around
w xthe cluster using the SCREEP algorithm 23 . This

model represents the Madelung potential inside clus-
ter with the error of -0.07 mhartree.

ŽWe used the GCOSMO generalized conductor-like
. w xscreening model solvation model 18 as a basis in

our description of the dielectric continuum in zone
III. This is a generalization of the COSMO model

w xoriginally introduced by Klamt and Shuurmann 24¨¨
for studying solvent effects. The GCOSMO model has
demonstrated its accuracy and applicability in a
number of studies of solvent effects on structure,

Ž w xreactivity and spectroscopy see Ref. 25 and refer-
.ences therein . The surface of the dielectric cavity

has been constructed from spheres centered on ideal
lattice positions of ions in regions I and II. To define
the size and the shape of the GCOSMO cavity, we have
used atomic radii which yield correct solvation ener-

˚ 2q ˚gies for ions in water: 1.72 A for Ca and 1.28 A
for Fy. The value of 6.85 has been used for the

w xdielectric constant of CaF 26 . The boundary of the2

cavity was divided into 244 surface elements and
surface charge distribution was approximated by ef-
fective point charges in the center of each surface
element. The surface charges satisfy the matrix equa-

w xtion 18

´y1
y1qsy A f , 1Ž .

´

where ´ is a dielectric constant and matrix elements
w xof the matrix A are given by 24 :

1
A s ,uÕ ™ ™

< <t y tu Õ

4p
A s1.07 ,uu ( Su

where t is a position vector of a surface charge andu

S is an area of the corresponding surface element.u
Ž .The scaling of surface charges in Eq. 1 can be

thought as an approximation to the rigorous Polariz-
Ž .able Continuum Model PCM approach. According

to our estimates, even for systems with dielectric
constant as low as 5, the error in calculated polariza-
tion energy does not exceed more than 10%.

In the original GCOSMO model, vector f contains
potentials on surface elements from the solute. In the
case of a defect in crystal, polarization would occur
only if the charge distribution in the cluster differs
from that characteristic for the perfect lattice. There-

Ž .fore, for potential f in Eq. 1 we take the differ-
ence

fsFyF 2Ž .0

between the potential on surface element from the
defective crystal F and from the perfect crystal F ,0

respectively. Generally, potentials F and F include0

contributions from the quantum cluster, from classi-
cal zone II and the Madelung potential from zone III.
However, the latter contribution obviously cancels

Ž .out in Eq. 2 . Note that in our method the potential
from the electronic charge distribution is calculated
exactly without using any multipole expansion as in

Žthe ICECAP program. The non-linear with respect to
.the cluster wavefunction polarization potential pro-

Ž .duced by charges 1 was added directly to the Fock
w xmatrix of the cluster 18 . Thus, LCAO coefficients

of the cluster wave function and polarization charges
converged simultaneously in the same SCF proce-

w xdure. This is in contrast to previous algorithms 9,11
Ž . Žin which quantum region I and classical regions II

.and III parts of the program work iteratively until
self-consistency is reached. Expressions for the total
energy of the cluster and its first and second deriva-
tives with respect to nuclear coordinates are basically

w xthe same as in the GCOSMO model 27 . For geometry
optimizations with the polarization correction on, the
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GCOSMO surface remained fixed. Therefore the refer-
ence potential of the perfect cluster F needed to be0

determined only once.
This method has been implemented in our locally

modified version of the GAUSSIAN92rDFT program
w x28 .

3. Results and discussion

We have calculated the equilibrium geometry of
perfect clusters of various shape and size including
up to 12 Fy ions in the quantum zone. In all cases
we found that deviations of optimized positions of

˚ions from the perfect lattice geometry are -0.01 A.
The same stands also for the defective clusters: the
equilibrium structure and the defect formation en-
ergy are virtually independent on the size and shape
of the quantum cluster. Furthermore we have found
that the equilibrium geometry of a cluster simulating

Ž .perfect CaF 111 surface agrees well with that2

found in recent periodic Hartree–Fock calculations
w xof the surface atomic and electronic structure 29 .

This confirmed a good quality of the computational
method reported above and allowed us to turn our
attention to defect studies.

In defect calculations, geometry of the clusters
modeling vacancy and interstitial have been first
optimized without taking into account the lattice
polarization. Positions of ions in zones I and II have
been fully relaxed to zero force. Although the clus-
ters are asymmetric and no symmetry constraints
have been applied during the geometry optimization,
the relaxation of the ions around defects was found

˚to be symmetrical within 0.01 A precision. This
provides an additional evidence towards the accuracy
of our embedded cluster method. The magnitudes of

displacements are following: eight Fy ions and six
2q ˚Ca around the interstitial move by 0.17 A out-

˚wards and by 0.20 A inwards, respectively. Four
Ca2q and six Fy around the vacancy move by 0.25
˚ ˚A outwards and by 0.14 A inwards, respectively.
The displacements of more distant ions were found

˚to be -0.01 A.
Formation energies of the anion vacancy and

interstitial calculated using different levels of ap-
proximations are listed in Table 2. Formation ener-
gies are defined as a difference in total energy
between defective and perfect clusters taking into
account the self-energy of removed or added Fy ion.
Electron correlation correction appears to be positive
for the interstitial and negative for the vacancy and
therefore it is relatively small for the pair of defects.
If the polarization of the lattice is neglected, the
calculated energy of the Frenkel pair formation is
significantly overestimated by ;3.6 eV. When po-
larization has been taken into account without reopti-
mizing the geometry, the error reduced to ;1.2 eV.
We found that reoptimization of the cluster geometry
with inclusion of the crystal polarization does not
noticeably change the equilibrium geometry of the

˚defects. The displacements change by -0.01 A and
the total energy change by only ;0.02 eV. Such
small influence of polarization on geometry and
electronic structure is consistent with previous stud-
ies on molecules in solution. This finding seems to
justify a common procedure to simply add the lattice
polarization energy to the total energy of the cluster

w xwithout geometry reoptimization 31,32 . However,
there are known instances when polarization of the
surrounding considerably changes the topology of

w xthe solute potential energy surface 33,34 . In such
cases, geometry of the cluster and polarization should
be determined self-consistently.

Table 2
Ž .Formation energies of Frenkel defects in CaF eV2

aHF HFqMP2 HFqMP2qpolarization Experiment Theory
yŽ .I interstitial F y3.71 y3.37 y4.93 y4.41 to y3.24a

yŽ .V F vacancy 10.06 9.66 8.91 5.87–7.09a
b cI qV 6.35 6.29 3.98 2.7 , 2.8 2.63–2.67a a

a w xWith different sets of shell model parameters fitted to experiment in Ref. 30 .
b w xRef. 15 .
c w xRef. 16 .
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We attribute the residual error in defect formation
energies to the choice of parameters, i.e., pair poten-
tials in Table 1 and atomic radii. To provide perfect
match of boundary conditions between zones I–II
and II–III, the pair-potentials used in zone II should
be consistent with the quantum-mechanical method

Ž .used in the zone I this is achieved in our study , and
yield by themselves, correct geometrical, energetic

w xand dielectric properties of the perfect crystal 9,35 .
Further work is needed for development of molecu-
lar mechanics parameters satisfying these conditions.
Although the use of atomic radii taken from solva-
tion studies in water is a reasonable initial guess,
more work is certainly needed in this direction as
well. However this problem is less severe since the
dependence of results on the choice of atomic radii
can be significantly reduced and the anisotropy of
the crystal polarization can be better taken into ac-
count by simply increasing the size of the region II.
Such increase does not have a noticeable influence
on the speed and cost of calculations.

4. Summary

We have presented a simple method based on the
dielectric continuum approximation for treatment of
the crystal lattice polarization in ab initio embedded
cluster calculations. Results of test calculations show
good agreement with previous theoretical and experi-
mental data. The advantage of our method is in its
flexibility and computational efficiency. It allows
treatment of defects in crystal lattices with arbitrary
symmetry, including defects on surfaces. The elec-
tronic structure of the quantum zone can be treated
with various electronic structure methods. If needed,
all crystal lattice can be treated in fully classical
approximation. The classical region can be described
in both rigid ion and shell model approaches. Effi-
cient geometry optimization can be performed with
available energy derivatives. The additional cost for
using self-consistent lattice polarization in zone III is
only ;10%. This method can be used for various
defect related problems in material science, surface
physics and chemistry. It is worth to mention that
this way of treating crystal polarization perfectly
suits for studying chemistry at solid–liquid interfaces

w xwith the CECILIA model 13 . The price we pay for

these advantages is complete neglect of atomic struc-
ture and anisotropy when dealing with polarization
in region III. Although such neglect seems to be
justified when explicitly treated regions I and II are
chosen big enough, more work is needed for clear
understanding of the accuracy of such an approxima-
tion and of the dependence of results on cluster size.
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