JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 17 1 NOVEMBER 2000

Thermochemistry of solvation: A self-consistent three-dimensional
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We developed a self-consistent three-dimensional reference interaction site model integral equation
theory with the molecular hypernetted chain closu®C-3D-RISM/HNG for studying
thermochemistry of solvation of ionic solutes in a polar molecular solvent. It is free from the
inconsistency in the positions of the ion—solvent site distribution peaks, peculiar to the conventional
RISM/HNC approach and improves the predictions for the solvation thermodynamics. The
SC-3D-RISM treatment can be readily generalized to the case of finite ionic concentrations,
including the consistent dielectric corrections to provide a consistent description of the dielectric
properties of ion—molecular solution. The proposed theory is tested for hydration of tharida

CI” ions in ambient water at infinite dilution. An improved agreement of the ion hydration structure
and thermodynamics with molecular simulation results is found as compared to the conventional
RISM/HNC treatment. ©2000 American Institute of Physids$S0021-9606)0)51941-2

I. INTRODUCTION Along with its merits, the RISM/HNC approach suffers
from a number of defects. It is known to yield essentially
Understanding and prediction of solvation properties oftrivial results for the dielectric constant of a polar molecular
electrolytes is of paramount importance for solution chemistiquid,-1%1314and to fail at finite salt concentrations due to
try as well as for biological systems. The presence of ions in inherent dielectric inconsistenty-® Perkyns and Pettitt
aqueous solution has an essential effect on conformation@lave obviated this problem by introducing consistent correc-
stability and binding of proteins and DNA? lonic effects tions that are similar to a bridge function of molecular theo-
play a central role at all levels of DNA structural ries. The dielectrically consistent DRISM/HNC approach
organizatiorf:> Molecular simulations can reliably model yields accurate thermodynamics and structure in 1-1 salt
solvation of small molecules, whereas the solvation thermogqueous solutions at finite concentratiohs.
dynamics of biomolecules in electrolyte solution constitutes  angther shortcoming of the RISM/HNC theory lies in
a considerable challenge for simulation because of their big,q imperfect treatment of excluded volume of interaction
size as well as long-range ionic correlations in solution akjies constituting the molecular species. It results, for in-
typically intermediate and low salt concentrations. Altema-giance, in substantial overestimation of the excess chemical
tively, these problems can be resolved within integral eqUangtential of hydrophobic hydration and its wrong depen-
tion theory of liquids. An integral equation theory providing dence on the hydrophobic solute s¥&° This mistreatment
realist_ic de_scription for moléacular qut_Jids is the reference in'can be corrected by employing closures other than the HNC
teraction site modelRISM).” It was ploqeered by Chandler approximatiof® or by introducing bridge corrections of vari-
and Andersehand then extended by Hirata and co-workers parameterized forf2* A well-documented manifesta-
to dipolar and quadrupolar molecular I_|quffc?sand toions in tion of the excluded volume inconsistency is related to the
a pplar molecular solvefft by adapting the hyperpetted problem of so-called auxiliary sites that label points in a
chain (HNC) closure. As an advantage over other Integralmolecule but contribute nothing to the intermolecular
equation theories for molecular quui8$he RISM can easily potentiale'”'mlt also shows up in the site—site radial distri-
gz)nrg:i g;ig:cgfs?g t(;fkseoilrlljtgogccczrt?r[\)trzﬁ% iﬁr;raliiglpsﬂggytions between strongly attracting interaction sites situated
e . . inside molecular cores, which are predicted to approach each
ficites as hydrogen bondind. Pettitt and Rossky em- . . .
o ._other closer than is allowed by the steric constraints of the
ployed the extended RISM approach to qualitatively predict

liquid state structure for three-site models of water. ThemOIecular shapes. Although the RISM integral equation ac-

RISM integral equation theory has been successfully used i;:hounts for the intramolecular bond constraints by means of

calculation of the structural and thermodynamic properties Ot' € |nt{amolfe CUITr m?trlx, |tsf HNC clozuredtrjats thg mteArac-
various chemical and biological systems and solutidns. lon sites of molecules as 1ree, nonbonded Species. AS an
example, the RISM/HNC approach yields the separation be-
tween the peaks of water oxygen and hydrogen interaction
dpresent address: Institute for Molecular Science, Myodaiji, Okazaki,siteS around an anion in aqueous solution to be somewhat
Aichi 444-8585, Japan. . .
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An alternative way to consider molecular systems is torequires special corrections for a finite size of the supercell
use the Ornstein—Zernik®Z) integral equation generalized which is employed within the 3D-RISM methd8.
to the six-dimensionda6D) case of orientationally dependent A considerable advantage of the 3D-RISM theory is
interactions, or the molecular Ornstein—ZernikOZ) proper description of the excluded volume of a solute, owing
equatiorf and then to employ Blum’s method of rotationally to the explicit account of its 3D shape. By formulating a
invariant expansions in the generalized sphericakelf-consistent 3D-RISM approach for ions in a polar mo-
harmonics® The MOZ methodology was successfully ap- lecular liquid, this allows us to eliminate the above-
plied to models of real molecular fluitlsand organic mentioned problem with violation of steric constraints in the
solvents?® Recently, this treatment has been employed byion—solvent site distributions. In this procedure, we obtain
Richardi, Millot, and Frie® for different models of water the 3D potential of mean force between the ion and one
and methanol, and by Lombardero and co-workets de-  molecule of liquid, each considered as solutes immersed in
scribe the simple point charg&PQ water in a variety of solvent of liquid. Radial distribution functions between the
thermodynamic states. By using the method of rotational inion and the interaction sites of solvent molecules are required
variant expansions, Beglov and RSbformulated the three- at input, which are calculated in a self-consistent loop by
dimensional3D) generalization of the OZ equation with the orientational averaging of the 3D distribution of the ion
mean spherical approximatidiViSA) closure for the distri- around the labeled molecule of liquid. The whole approach
bution of a liquid of spherical molecules with an embeddedcan be readily generalized to the case of a finite ionic con-
dipole around a polar solute of arbitrary form. Richardi, centration; this will be considered in further work. The self-
Fries, and Krienk& developed the MOZ/HNC description of consistent 3D-RISM theorySC-3D-RISM we propose be-
solvation of spherical ions in acetonitrile and acetone. In thdow improves the description of the solvation structure and
above works, the MOZ integral equation approach provides hermodynamics of simple ions in a polar molecular liquid as
detailed, complete information about the solvation structurecompared to the conventional, one-dimensiofid}) RISM
and the solvation thermodynamics in good qualitative agreemethod. Section Il presents the SC-3D-RISM/HNC equa-
ment with molecular simulations. As an advantage, it doedions for an ion at infinite dilution. Section IlI gives a deri-
not share the above-mentioned problems of the RISM intevation of the expressions for the excess chemical potential,
gral equation theory with excluded volume. However, such £nergy, entropy, and enthalpy of solvation. Section IV intro-
treatment quickly becomes increasingly cumbersome witlfluces corrections necessary for proper account of the effect
asphericity of solvent molecules because of the slow conver@f the long-range asymptotics of the correlation functions on
gence of rotational invariant expansions, especially in théhe solvation thermodynamics. Section V illustrates the ap-
general case of solvent molecules not possessing any rotBroach by calculation of the solvation structure and thermo-
tional symmetry like acetonitrile or acetone in Ref. 32. Thisdynamics for Na and CI" ions in ambient water.
justifies further efforts in improvement of the RISM theory
and, in particular, development of its 3D version. Il. SELF-CONSISTENT 3D-RISM THEORY FOR A

A much more detailed solvation structure information SIMPLE ION IN A POLAR MOLECULAR LIQUID

fr?n be (;]k_)tamgoll dfr%rg g,'et %Dt_generafl]lzatmfn O{ thet _RlSM The orientation-dependent distribution function between
eory which yields Istribution profiles of solvent inter- ., qecylar species immersed in a molecular solvent can

action sites around a solute of arbitrary shape. It was firsf, j\iained from the 3D-RISM equations for a solute-
dgrr;yedhbydChade?r, M,CCO?/' an(rj] Sd|r:cger ina Qf”era' f?rmsolvent mixture at infinite dilutior® In this procedure, the
wit In the ens?l’ty unctional method tor nonunitorm poly- gq|yent contribution to the orientationally dependent poten-
atomic systems? and recently developed by Cortis, ROSSKY, (ia| of mean force between two molecular solutes through
and Friesner for a one-component dipolar molecular Iﬁﬁud., interaction sites of solvent molecules is calculated as a con-
by Beglov and Roux for water and organic molecules inyqtion of the 3D site correlation functions of solvent mo-

23,35 : 37 .
water?>*> and by Kovalenko and Hirata for waté] lecular sites around each of the solutes. The solute—solute

i 139 1 . . . . . . - -
metal-water interfaceS;> 3D potentials of mean force for yiciribution thus has full six-dimensional orientational de-

molec4L(J)Iar ions in a polar organic solve’ﬁta_nd_lon pairs N pendence, whereas solvent molecules are described at the
water.™ A self-consistent 3D-RISM description of & one- iyieraction site level with their orientations averaged out. For
component molecular liquid is obtained by considering ong; simple jon immersed in a polar molecular liquid, the prob-
molecule as a “solute” immersed in solvent of other mol- |y simplifies to a 3D distribution of the ion around one
ecules of liquid to calculate the 3D “solvent—solvent” cor- gqjyte molecule of liquid, both immersed in the solvent of

relations, and then averaging them for the solute orientationﬁquid_ The MOZ equation for the solvent—ion correlations at
to get the site—site solvent—solvent correlation functionspfinite dilution is written a&

used as input to the 3D-RISM solute—solvent equatiris.

The 3D-RISM appro_ach allows one to callculat(.a the poten- hsi(r,Q)=cSi(r, Q) + ﬁf dr’dQ’ css

tials of mean force in ion-molecular solution directly as a Q

difference between the chemical potential of solvation of a , Nbsicor

cluster of solutes and of individual ones, and to obtain the X(Ir=r"1.Q.Q)Hh*(",Q"), @
solvation structure around the cluster of solutes in d&tdfl.  where the superscriptsi™ and “ s’ denote the ion and sol-
should be noted that accurate calculation of solvation thervent; h andc are, respectively, the total correlation function
modynamics for ionic solutes in a polar molecular liquid (TCF) and the direct correlation functiaidCF) that depend
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on the separationbetween the corresponding species and orand the convolution inf5) is calculated by transformation to
orientation{) of solvent moleculesp is the solvent density. reciprocal space with the 3D fast Fourier transform
We need to reduce in part the orientational dependence of tH@D-FFT).*

6D argument o3(r,Q,Q’) by integrating out the orienta- To treat the problem self-consistently, the ion—solvent
tional degrees of freedom if1). Notice that due to the isot- site radial TCFsh3'(r) are calculated numerically by the
ropy of the bulk system under consideration, one orientaerientational averaging using Eqggl). As proposed in Ref.
tional degree of freedom of the Euler angl@sand ()’ is 37, we apply the averaging to the Fourier expansion of
dependent. That is, the 6D argument comprises the distanceh®'(r). It simply reduces the expansion in 3D plane waves to
andfive independent angles if?, (’. In what follows, we that in spherical ones

fix the third angley in the orientationQ) = (¢, 6,¢), which

brings the 6D argument into the form of a vector between the hsi(r)zif do 2 hSi(k)exp(—ik-re,)

particles and the 3D orientation of the second particle, “ Q R s«
(r,0,0")=(r,¢,0,Q")=(r,Q2"). Similarly to Refs. 34, 38, _

and 39, we assume the decomposition of the DCF into partial => sinkr) ; exp(—ik-re,)hsi(k), 6)
contributions of sites of a solvent molecule k kr =k “

with the phase factor expfik-rg,) arising due to the shift of
CS(r,0,0)=c5(r,Q)=2> cir+ry,), (2)  the averaging center from the origin to site The orienta-

“ tional averaging procedure thus consists in performing the
wherer,, is the shift of interaction sitex of the solvent 3D-FFT, summing the expansion coefficients with equal ab-
molecule with respect to its origin. Here the partial, 3D sitesolute values of wave vectér, and then synthesizing'(r)
DCFsc3¥r) do not depend on the solvent molecule orienta-of spherical waves on a linear one-dimensiofidD) radial
tion, ', since each its site is considered to be sphericallygrid. Finally, the radial distribution functions are transformed
symmetric. This basic assumption of additivity in the 3D- by the linear 1D-FFT, and then splined to obtaifi(k) at
RISM theory is justified since the DCF has the long-rangewvave vector absolute valudsnecessary for the 3D convo-
asymptotics of the interaction potential which is supposed tdution in (5). The parameters of the 1D grid are chosen in
be additive,c’Y(r,Q’)~ - B= ,usXr,) for r—o, whereg  such away as to override the resolution of the 3D grid in real
=1/kgT is the inverse temperature, anglis the position of ~and reciprocal spaces. The functidifr) are calculated by
interaction sitea of solvent molecule 2 with respect to sol- Eq. (6) inside a sphere, <L ,.,/2, whereL ., is the largest
vent molecule 1. On transformation to the reciprocal spacedimension of the supercell, n,=max(.L,,L,), and are

the decompositioii2) takes the form padded with zeros outside it. The above procedure of orien-
tational averaging is substantially faster than quadrature
kO =S cS(K)exp—ik-r..), 3 schemes, for example, Lebedev’s quadrature method em-

1 ) ; «(K)exp sa) ® ployed by Cortis, Rossky, and FriesriérAs we have dis-

cussed in Ref. 37, the approach given by Ej.distorts the
averaged radial correlation function by an artifact of small
oscillations with the frequency equal to the cutoff of the
plane wave set used. However, this is of no importance since

tion, and substitution of relatiof8) allows one to carry out - g,ch gsgillations are smoothened out in the convolution pro-
the integration over the orientatidd’. This reduces the 3D cedure in(5), and introduces a negligible error.

solven_t—ion TCF tq the radial on_e.l.)etween the !on ar]d sol- T4 close the solvent-ion 3D-RISM equati¢s), we use
vent sitea, according to the definition of the orientational 1o NG approximation which is proved to be adequate for

in which the dependence on solvent orientatidhgoes into
the phase factor expfik-rg,). In the reciprocal space, the
convolution in the MOZ equatiofil) turns into multiplica-

average ion-molecular systems with long-range electrostatic
‘ 1 interaction® The molecular 3D-HNC closure is written as
hs'r=—fd(2h5ir+r, 4 . . . _
(07 | AT “ g°(r) =exp(— Bu*(r) + h*\(r) —c\(r)), )

sin 1 si _ whereus'(r) is the 3D interaction potential between the ion
he (k)= 5[ dQyh>(k)exp(—ik-rg,). (4D and the molecule of liquid, angs(r)=hsi(r)+1 is the 3D
distribution function of the ion around the molecule. With
Thus, we obtain the 3D-RISM equation for the 3D correla-this closure, the solvent-ion 3D-RISM/HNC equations to be
tionshs'(r) andc®/(r) of the ion around the solvent molecule solved can be cast in the form

hsi(r)=csi(r)+p>, cS(r)xhsi(r), (5) hsi(r)+1=exp(—ﬁusi(r)+p2 cSS(r)xhs(r)|, (8

wherehji(r) is the radial TCF between the ion and soIventwherehZi are calculated by using E¢6). Notice that unlike
site @, ¢3¥r) is the 3D-DCF of solvent siter around a la- the 3D-HNC approximations for the 3D correlations of sol-
beled molecule in pure molecular solvent, and”’‘means  vent interaction sites around the soldte?® the molecular
convolution in direct space. The 3D site correlation functions3D-HNC closure(7) relates the 3D correlations between the
are specified on a uniform 3D grid in a rectangular supercellion and theentire solvent molecule. This provides consis-
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tency of the solvent—ion correlations, in particular, ensures

the steric constraints for the ion—solvent site distributions. ~ Ca(K)= > @35(K)cS(K). (15
We determine the 3D site DCFs of pure solvent around 7
its labeled moleculecSr), from the SC-3D-RISM/HNC In a similar manner, the 3D site DCFs of pure solvent
equations for a one-component molecular lidtid can be determined alternatively from the method proposed
by Cortis, Rossky, and Friesriérby the molecular site
S8/ — ss ss ss Ornstein—Zernike integral equation with the HNC approxi-
hy (k) ; Cak)(@a3(K)+ phas (K)), © mation (MSOZ/HNC), which can be written as

Gu(n) =N+ 1=exp— AU + e () —cer). Wi =3 (SRl +phScE ), (16

(10)
where Fhe radial TCFsEetween sitasand y of two mol- gSS(r) =hSS(r) + 1=exp( — BUSS(r) + hS(r) — cSX(r)),
ecules in pure solvenly;’(r), are calculated by the orienta- (17)
tional averaging ) ) _ ) )
with the orientational averaging of the solvent 3D site DCFs
heS (1) 1 40 hSS c3Xr) and then the decomposition of theeragedsite—site
1) = O Ny (Fsa 1) DCFsc;>(r) into the radial site—site DCFe; (1)
sin(kr 1
-3 S 2, exH-ikerahk). (1D =g f dO,C5re+1), (18
kookr =k y

Hereu$r) is the interaction potential between solvent site
and the labeled solvent molecule, a(agsy(r)z o(r—1l,,) is

the intramolecular correlation matrix of a solvent molecule houl hasi hat th | .
with site—site separationd,,, or in reciprocal space It should be emphasized that the solvent—ion SC-3D-

©%(K)=sin(l,,)/(Kl,,). Although Eqs.(9—(11) provide a RISM equations in the formulatioil2) with the 3D-DCF

consistent description of the labeled molecule of the solvenf2V€raging and decomposition relaticfis) and(15) arenot
they do not resolve the problem of auxiliary sites for the€duivalent to Eq(5) with the 3D-TCF orientational averag-

solvent—solvent correlations. However, this is not crucial"d 9\ven by Eq.(4). The additive approximation in E13)

since such an artifact manifests in the correlations betweef)l (19 is exact only in the long-range asymptotic limit and

polar molecules much less than in those between ions a us decreases the level of accuracy of the solvent—ion cor-

polar molecules. Further improvement would require eithe'relations. Furthermore, calculation of the ion—solvent site ra-
- - si - - :

treatment of 6D solvent—solvent correlations or inclusion ofdidl DCF ¢, from relation(15) involves the inverse of the

bridge corrections in the 3D-HNC closure for the 3D site-

Effy(k>=§ w33 (K)cs(K). (19

intramolecular matrix, which has a singularity kat 0. Due

correlations(10). Such an improvement will be addressed © the electroneutrality condition, the singularity is cancelled
elsewhere. out in the summation over interaction sitgswhich requires

An alternative formulation of the solvent-ion 3D-RISM SPecial evaluation of the averagefi(k=0) and introduces
equation can be obtained by the orientational reduction of th@dditional numerical errors. In the case when the approxima-
MOZ equation (1) with the term representing interaction tion (13) becomes too crude, the decomposition procedure

over the “third particle” written asfd3h3¥(13)csi(32). It ~ Can cause instabilit.y a”‘?' e_ven.divergence.
has the form Similar properties distinguish the solvent—solvent SC-

3D-RISM/HNC equationg9)—(11) from the MSOZ equa-
G cor o s tions (16)—(19) of Cortis, Rossky, and Friesn&The former
h*(k)=c (k)+p§a: hak)cg(k), (12 do notinvolve the additive approximatiofl9), and employ
_ simply the orientational averaging of the 3D site TGEr)
with the ion-solvent site radial DCEEZ(r) obtained self- to obtain the radial site—site TCFs;(r), which is a nu-
consistently from the approximate decomposition of the 3D-merically stable procedure. In contrast, the latter need first to

DCF c®/(r) into partial site contributions similarly t(?) orientationally average the 3D site DCE}(r), and then to
decompose the averaged radié@(r) into the partial site—
cSi(n = c(|r—rgl). (13)  site DCFsc;(r) according to the additive approximation

(19). As has been said, this is exact only in the asymptotic
The latter can be performed by orientationally averaging théimit’ and on the other hand, can cause numerical instability
3D-DCE which has been observed by Cortis, Rossky, and Frigsner
in the case of a liquid of highly charged polar molecules.
: , Numerical solution of a 3D integral equation constitutes
Ei(f)Zaf dQ,c®(re,t+r), (14 a significant challenge. We converged the solvent—ion as
well as solvent—solvent SC-3D-RISM/HNC integral equa-
and then decomposing treveragedion—solvent site radial tions by means of the modified direct inversion in the itera-
DCFsc? into the partial site contributionsc®' by using the tive subspacgMDIIS) method elaborated by Kovalenko,
relation following from the assumption of E¢L3)3+38:39 Ten-no, and Hiratd’ It has been presented in detail in Refs.
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37, 38, and 40, and so we only briefly sketch the basic iteraelosure, in the first peak region the Coulomb attraction sub-
tive step used in computing the correlation functions. Westantially exceeds the well depth of the total interaction po-
solve the pure solvent set, Eq®)—(11), for the 3D site tential. This overflows the HNC exponent at the iteration
indirect correlation function$(r) =h3%r) —c3Xr). Inserted  start. Therefore, the initial guess of the DCF should include
into the HNC closurg10), it yields gf/s(r) and thencsf(r). the Coulomb potential properly reduced in the region of the
Thereafter we orientationally averagg(r) by using the repulsive core. There are several functional forms of such
resummation in reciprocal spa¢él) to obtain the radial “damping.” “*3¢=%%n the 3D case, it is conveniently related
site—site TCF$35(r), and finally calculaté$r) from the  to the Ewald summation employed within the supercell tech-
3D-RISM equation(9). The vector residual of the SC-3D- nique to synthesize the electrostatic potential of a solute on
RISM/HNC equations which is a functional to be zeroed inthe supercell grid. Namely, we specify the starting vector as
the process of solutiorR5(r) =R5T{t;r)}], is defined as the electrostatic potential of site charggin the field of the
the difference of the 3D site TCFs following from the 3D- site charges of the labeled solvent molecgylebut smeared

RISM equation and the 3D-HNC closuteé: by the Gaussian distribution to half-width
SS/ .\ _ 2SS ss,
g, (r)=exp(— BuIr)+t.1r)), < Bq, o . p('k ) k202>
rN=c— exp ik(r—r,)— ,
h(s)zsy(r):<gixs(r3a+r)>ﬂr_11 Y ( Vcellk#O o qa?f ( “ 4
(20 (22

h3%(r)= S —=1—t3X1r)* (w3 (r)+ph33(r)),
V(1) ; (gatr) (D) (@es1)F phay(1)) whereV g is the supercell volume, and the summation over

. s o5 wave vectok is carried out over its 3D grid values by means
Ry =g51r) —1—h1r). of the 3D-FFT. The initial guess for the solvent—ion corre-
Given the solvent—solvent correlations, the solvent—ion Seﬂgatlon,ts_'(o)(r), is specified by the same expressi@g) but
Egs. (5)—(7), are solved similarly for the 3D solvent—ion for the ion chargeg; in the field of the smeared molecular
indirect correlation functiorts'(r)=hsi(r)—csi(r). The re- chargesq,. The smearing parameteris to be roughly ad-

sidual R%(r) = RS[{t%(r)}] is setup by justed so as to provide a moderate value of the root mean
g N . square residual at start. Notice also that the MDIIS procedure
g>'(r)=exp(— Bu”'(r) +t>(r)), can accidentally send the iterated vector far from the solu-

tion, and then it should be restarted from the iterated vector
with the minimal residuai’*®“°In order to avoid overflow
(21)  of the HNC exponent is such a case, we put an upper limit of

h3(1)=(g%(reu+1))a — 1,

hsi(r)=g%(r)— l—tSi(r)+p2 c3(r)* hzi(r), 10 on the exponent argument. This prevents overflow inter-
“« ruptions in the computational procedure while not influenc-
RSiI(r)=g%i(r)—1—hsi(r). ing the converged distributions, for which it is well below
this level.

We start the MDIIS iterative procedure from the initial
vector, on the one hand, possessing the long-range asymptot-
ics oftf/s(r) which is essentially the electrostatic asymptotics
of the DCF csf(r) but of opposite sign, and on the other lll. THERMODYNAMICS OF SOLVATION

hand, fitting its behavior inside the repulsive cores where it A ¢jose analytical expression for the solvation free en-

. . 4 .
goes to a constant. It was first noticed by Righat this ergy has been derived within the OZ/HNC theory by Morita
delivers a very good estimate of the DCF for a one-gnqg Hiroiké* and generalized to the RISM/HNC method by

component plasma. Such a guess represents a major part§hger and Chandiéf. It can be trivially extended to the
the solution for charged molecular systems in both 1D andp_RiSM/HNC approacf®

3D cases, which allows us to begin convergence atonce at  gjnce we consider solvation of a single ion, below all
given temperature and full molecular cha?@‘g. We thus  gycess thermodynamic quantities are implied in the limit of
avoid the procedures of gradually decreasing temperaturginite dilution. The excess chemical potential of solvation
(the so-called “cooling’) and increasing site charges uf 4 jon in a molecular solvent is obtained by the common

(“charging”) " 34u453ual_ly employed  to  facilitate hocedure of “switching on” the solute—solvent interaction,
convergencé!%3443This greatly reduces computational ex- that can be written as

penses. It should be noted that the sum of the bare Coulomb

potentials of the point charges at the interaction sites is poor .

as the initial guess for the DCF. The latter follows the run of AMZPI drfu (r)(susi(r)gsi(r). (23)
the interaction potentiakwith opposite sigh practically 0

down to the bottom of the attractive well, after which it turns

to the short-range behavior. The potential minimum usuallff the 3D solvent—ion correlations are obtained from the
results from the competition of the Coulomb attraction andMOZ/HNC equations(1) and (7), the integration over the
the short-range repulsive core. Although it provides the corinteraction in(23) can be performed analytically. Substitu-
rect asymptotics of the DCFs at long-range to cancel oution of the 3D solvent—ion indirect correlation functitiy(r)
with the interaction potential in the exponent of the HNC from the MOZ equatior{1) into the 3D-HNC closuréd?)
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- , S(hS(r)cS(r—r")hsi(r’
hs'(r,Q)+1=exy{—,BUS'(r,Q)Jr%J‘dr’dQ’css (7). ha(r)
=shsi(n) X cSX(r—r)HhS(r')+hsi(r)
><(|r—r'|,Q,Q')hS‘(r',Q')), (24) “
X >, cSY(r—r")shsi(r"), 30
and functional variation of expressi¢o®4) gives after simple ; «l )oN(r') (30

rearrangement ,
g does not possess the symmetry as in @d). Nevertheless,

BgSi(r, Q) 8usi(r,Q) taki.ng 'into account the degompositiaﬁﬁ) gmployed in the
derivation of the 3D-RISM integral equatidb), the second
term of expressiornf29) is equivalent to that ii26), and the
variation(30) is same a$27). Therefore, within the additive
approximation(2), the solvation chemical potential obtained

=—5hsi(r,9)+£f dr'dQ’ eSY|r—r'[,0,0)

> 5hsi(rr,QI)+hsi(r,Q)£f dr'dQ’ css from the_3D—RISM/HNC equation&k) and(7) does take the
Q form as in Eq.(28).
X(|r_rr|’Q,Q/)5hsi(r/’Q/). (25) The excess energy of solvation can be obtained by tak-

ing the isochoric temperature derivatife®

On insertion into(23), the first and second terms of expres-
sion (25) can be immediately integrated over the interaction. Agz(
Taking into account the MOZ equatidf), and adding inte-

gration over orientatiorf) to symmetrize the third term, we
have

A BAR)
B

where As,, is the excess entropy at constant volume. An

alternative decomposition of the excess chemical potential of

solvation into the excess enthalpy and the excess entropy

BA uHNC= —pf drcsi(r) Asp at constant pressure can be achieved by the use of the
isobaric temperature derivatitfe

\

2 .
P_ ’ ' usl(r) si ss I BA
+szdrdr dQdQ fo hei(r,Q)c Ah:( (/Zﬁu)) Ap+TASH, 32
. P
X([r=r"],Q,9")6h%(r",Q"). (26) . ) o
The difference between the two entropic terms is giveff by
The last integral over the interaction (26) is taken by using JA
the symmetry of the variation T(ASP—ASV):Ah_ASZTapP(TM) , (33
Pt

S(hsi(r,Q)c(r—r'],Q,Q")hs(r',Q")) _ _ _ _

‘ . where ap=(d(log V)/dP)p is the isobaric thermal expansion

=6h%'(r,Q)c3(|r—r'[,Q,Q)h(r’,Q") coefficient of solvent.
- - Applying Eg. (31) to the solvation chemical potential
Si s -y ’ Sifpt ’
+ho(r, Q)es(|r—r[,0,0) sh%(r",Q"). (27) (28) yields the solvation energy in the form

Using Eq.(1), this results in the expression for the chemical . .
potential of solvation of the ion in the familiar closed ana- AszkaJ dr Bu'(r)g®(r)
lytical form

+%kaf dr{cs'(r) 8thSi(r)—hsi(r) 67:¢cS'(r)},
AM“NC=kaf dr{3(h*(r))?= 3h®\(r)c®(r) —c®(n)}.

28) (34
where 8:fS'(r)=T(df'(r)/dT), (' stands forcS' and h*')
‘are the temperature derivatives of the 3D correlation func-
tions. Although they can be obtained by solving integral
equations derived by differentiation of the RISM/HNC
ones?®>*"*8we found it is much simpler to calculate them
directly by using the central finite differencing approxima-

ﬁA,uHNC=—pf drcSi(r)+p2f drdr’Ju “hsi(r) tion
0

In the present approach, we determine the 3D solvent
ion TCF from the 3D-RISM equatio(b). Making functional
variation of the 3D-RISM/HNC equatiof8), and inserting
the result into(23) with allowance for(5) gives

5-15i(1) Tfsi(r;T+AT)—fsi(r;T—AT) 35
. ry= .
X > eS(r—r")shsi(r"). (29 T 2AT

In expression(34), the former term is the average solute—ion

The latter term in this expression cannot be integrated ananteraction energy, and the latter is the solvent reorganization
lytically over the interaction since the variation energy.
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The solvation enthalpy obtained from E@33) and(34) adapted this correction to the 3D-RISM/HNC theory for an

is written as ionic molecular solute in a polar molecular solvent. The SC-
3D-RISM approach at hand can be improved in a similar
Ah=Ag+Tap| Au"NC+ %pk-rf dr{hS‘(r)apcS‘(r) manner. We postpone a detailed consideration of its dielec-

tric properties and elaboration of such a dielectric correction

: : to future works.
—CS'(f)5phs'(f)}} (36) The SC-3D-RISM/HNC integral equations are solved by
. 4 _ means of the supercell technique, and the electrostatic part of
where 5,f(r)=p(9*(r)/dp),, are the temperature deriva- e 3p periodic potentiali®P(r) between the ion and the
tives of the 3D correlation functions, and are calculated by,arigic supercell images of the labeled solvent molecule is
the central finite differencing as in E(S). calculated by means of the Ewald summation method

IV. ELECTROSTATIC CORRECTIONS FOR FINITE (o) a;
SIZE OF THE SUPERCELL OSP(r)=

4 k? 52
>SS qa—fexp(ik«r—ra)——
cellk#0 « k 4
1—erf(Ar,/6)

Ar '

a

The SC-3D-RISM approach requires special treatment
for the electrostatic asymptotics of the correlation functions, +Qi2 o
representing ordering of polar molecular solvent in the pres- a
ence of an ion. However, they are somewhat different from
the case of the 3D-RISM/HNC equations for the correlationgvhere Vg is the supercell volume, the summation over
of polar molecular solvent sites around an ionic soffite, wave vectok is carried out over its 3D grid values by means
because we instead consider those of an ion around one pol@kthe 3D-FFT, andy is the half-width of Gaussian smearing
solvent molecule regarded as a solute. The 3D solvent—iofif site chargesj, of the solvent molecule. Because the com-
DCF now has the asymptotics of an ion—dipole rather thaPensating charge potential decays on lengthhich is typi-

(40)

Coulomb potential, cally much smaller than the supercell size, its direct-space
summation over the periodic images of the solute is replaced
cSilN(r)y=— pOS(r)=—Bq, >, L —ﬁqidL;, in (40) with tabulation on the supercell grid, with separation
@ |11l r Ar, from molecular sitee determined subject to the mini-
(37 mum image conventiof, Ar; ,=min(r;—r; ,+nL;), ]
where g; is the ion charge, and,==,q,r, is the dipole =XY.Z. Within this supercell treatment, the 3D solvent—ion

moment of a solvent molecule comprising site charges =~ DCF and TCF acquire thgeriodic long-range asymptotics
Moreover, it is obvious from the definition of the potential of

mean forcews'(r)=—kTlog(g®(r)) ~ —kTh(r), that the c* P (r)=—pOP)(r), (41)
3D solvent—ion TCF has a similar ion—dipole asymptotics

but scaled by the dielectric screening. It is the long-range  hS{P!)(r)=— BOSP)(1)/ egigy. (42)
asymptotics of the potential of mean force between the mo-

lecular dipole and the ion in a dielectric continuum Hunenberger and McCammth found for computer

i i simulations that an artificial periodicity imposed by the use
heit(r) = = (1) misu, (38) of the Ewald or related methods produces significant errors
whereegsy is the dielectric constant of solvent in the RISM in the solvation free energy of an ion in a dielectric con-
description. tinuum. Kovalenko and Hirafd showed that for an ionic
The solvent—ion SC-3D-RISM/HNC equatios)—(7) solute in polar molecular solvent, the distortion of the 3D
together with the solvent—solvent on€3—(10) yield the  solute—solvent correlation functions brought about by the
same trivial dielectric constant as that following from the 3D-RISM supercell treatment results in essential mistreat-
conventional 1D-RISM/HNC theofy3° ment of the solvation thermodynamics. For instance, the er-
_q.4 2 ror in the solvation chemical potential of a univalent simple
erisw= 11 57pds. (39 ion in ambient water amounts to 35 kcal/MBlwhich is
This is essentially a result of the fact that the 3D-HNC ap-close to the effect of the periodicity artifact in molecular-
proximation (10) is applied to 3Dsite correlations that in- dynamics simulations for a similar systéflt can be can-
volve orientational averaging. The latter enforces an ion-celed out with an accuracy of better than 0.05 kcal/mol by
dipole asymptotics of the solvent 3D site DCES(r). It introducing corrections to the 3D-RISM/HNC equations, re-
leads to the above trivial dielectric constagfisy by the  storing the asymptotics of the 3D solute—solvent site TCFs
solvent route when inserted into the solvent—solvent 3D-as well as DCF&° The former is corrected for the a constant
RISM integral equatior{9), and further by the solute route shift brought about by the supercell background charge den-
from the solute—solvent 3D-RISM equati@). Perkyns and  sity neutralizing the solute charge, and the latter for period-
Pettitt'® showed that the 1D-RISM theory prediction for the icity distorting the Coulomb asymptotics of the 3D solute—
dielectric constant can be essentially improved by introducsolvent site potential.
tion of bridge corrections to the solvent—solvent correlations,  After solving the SC-3D-RISM/HNC equatiorts), (6),
ensuring the dielectric consistency of the RISM approach. A7) for c¢SP)(r) and hs®)(r) on the periodic supercell, the
a straightforward extension, Kovalenko and Hif3thave nonperiodicasymptotics of the 3D solvent—ion DCF is re-
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stored merely by subtracting the electrostatic periodic poten- ) = exp—k?6%/2)
tial (40) and adding back the theoretical expres<ign) 1e9=8p8q7 >, qaq7JO dk——z—
ay
() =c¥P(r)+ B(®P(r) — ®S(r)). (43) sin(kl,,.)
ay

The asymptotic$37) of the 3D solvent—ion TCF is restored
in a somewhat different way so as to keep proper decay oihich is easily evaluated by numerical integratfon.
the 3D solvent—ion distribution function at the repulsive core  In a similar way, the ion solvation energ$4) with the

edge correction for the finite size of the supercell is written as
g%() =g¥P(r)exp( B(®P(r) = D%(r))/ egism)- As=As(eS)+kaJ dr[,BuS‘(r)gS‘(r)
(44) Veell
The asymptotic correctio®s'(P)(r) — ®S(r) is essential at a +1 SSIr) S-hSi(r) — hSir) S-cSicr
large separation between the solvent molecule and ion, and 2( () &xh™(r) (1) ére™(n)
rapidly falls off inside the solvent—ion repulsive core. How- 1
ever, when introduced as an additive term rather than a factor + w(ﬁqﬁi(b)(r)y} , (49)
in the distribution function, it results in a big error in the 28Rism

@ntern_al energy obta?ned k_)y the i_ntegrati_on of the_solvent—Where 8:cS\(r) and 8:hs(r) are the temperature derivatives
ion .dlstr|but|on funct.|0n with the interaction potentigd4). of the corrected 3D correlation functiof43) and (44), cal-
Notice also4othat unlike polar molecular solvent around any|ated by using the finite differencéss). The electrostatic
ionic solute;” in the present case there is no need to correcterm in the solvation energy obtained on separating out the

the 3D solvent—ion TCF for the constant shift because thgyn_dipole asymptotic$46) in the 3D correlation functions
net charge of the labeled solvent molecule being the solute ignq their derivatives entering9) has the form

zero and so the supercell neutralizing background is absent.
~ With the ion—dipole asymptotic7) and (38), calcula- Agle9— — €rismT 1 [(e9
tion of the solvation chemical potential from expressi26)

requires analytical treatment of the long-range contributions. h the t t derivai f the dielectri tant
They appear in the both term€(r)cS(r) and (5(r))? but where the temperature derivative of the dielectric constan

(39) is taken into account.
Finally, the ion solvation enthalp§B6) is corrected as

, (50)
Zfélsm

cancel out incS'(r) due to the solvent molecule electroneu-

trality. On separating out the electrostatic contribution, the

rest of the integral is taken just over the supercell space on , s 2 dvsios i

which the 3D correlation functions are defined Ah=Ae+pkT “va ”dr[i(h (r))*=zh(r)c>(r)
ce

—c%(r)+3{h%(r)8,c%(r) = cS(r) 8,h%(r)}],

1
AMHNC:AM<GS)+kaJ dr[—(hs'(r))2
2 (51

cell
1. si whereAe is the corrected solvation ener¢49), whereas no
— 5 hP(r)es(r)—c*(r) electrostatic correction is necessary to the latter integral since
its electrostatic components canceled out.
erism— 1

+ —(BCDSi(b)(r))Z] - (49

2
2€RisMm

. . 9 V. NUMERICAL RESULTS AND DISCUSSION
To provide convergence of the electrostatic tekxm'®?, we

define the long-range asymptotic term as the electrostatic po- |n order to test the SC-3D-RISM/HNC integral equation

tential of broadened site charges rather tf@i) theory, we calculated the solvation structure and thermody-
namics of the sodium and chlorine ions at infinite dilution in
sitb) oy g erf([r—r,|/é) ambient water at temperatufe=298 K and densityp,yater
PPN (r)=g; X (46) o : -
= [r—r,] =0.03334 A3, We employed the Extended Simple Point

Charge (SPC/B water model of Berendsen and
The long-range component co-workers>* The ion—water site as well as water site—site
interactions are modeled by the sum of the Coulomb and
€rism— 1 . 12-6 Lennard-Joneg4.J) potentials, with the LJ diameter and
A,u(es)=—mkaf dr (B (r))? energy parameters determined by the standard Lorentz—
Berthelot mixing rules. Following Pettitt and Rossiya LJ
_ _ SRisMT 1 [(e9 47) size of 0.4 A is introduced for the water hydrogen sites. This
2€hism ’ does not affect the entire potential a water molecule since the
hydrogens are situated well inside the oxygen core, however
is then reduced, with allowance for the electroneutrality ofallows one to adjust the RISM description for hydrogen
the solvent molecule, to the one-dimensional integral bonds. For the ions, we adopted the LJ parameters elaborated
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by Dang and co-workerS. The latter have been used by
Rasaiah and co-workers in molecular simulatiotE. 44

The 3D treatment was done on a grid of @bints in a
cubic supercell of sufficiently large size of 25.6 A to include 3
three hydration shells around the ion. The increase of the
grid resolution to 128 points results in a negligible refine-
ment of the hydration chemical potential. The smearing pa-
rameters in Egs.(40), (46), and(48) was chosen to be 2.5 A.
For the solvent—solvent and solvent—ion initial vectors, the
smearing parameter in ER2) was taken asr=1 and 1.8
A, respectively. This provides at start the root-mean-square 0 :
residual of magnitude less than one, which ensures fast anc
stable convergence. In calculation of the temperature deriva- 4l ,*_
tives of the 3D correlation functions i49) by the finite |
differencedq35), the temperature step-siad is 2 K, and the
density derivatives in51) were obtained in the same way
with the density step-sizAp to be 0.0002 A3,

With the use of the MDIIS methotl;*3°the solvent— 2-
solvent integral equation®0) at given temperature and den-
sity are converged to a root-mean-square accuracy of kD 14
80 iterations with the MDIIS subspace of 10 vectors, which
for the 3D grid of 64 points takes about 12 min on a 600
MHz Pentium PC. Solution of the solvent—ion integral equa- 1 2 3 4 5
tions (21) requires 30 MDIIS iterations and takes about 1.5 r(A)
min.

The ion—solvent site radial distributions are finally ob- FIG. 1. Radial distribution functions between the Gbn and the oxygen

tained from(4a by explicit numerical orientational averag- 2"¢ nydrogen interaction sites of water solvent molecugsc (r) and
H-c-(r), at ambient conditions. Comparison of the orientational averages

ing of the 3D ones in di.reCt space. We_ calculated the integragf the 3D water—ion distribution functiogy,_c;-(r) obtained from the SC-
over sphere by employing the 700-point set of the RepulsioBD-RISM/HNC theory with those following from the conventional, 1D-

scheme within the Spherical Harmonic Reduction or Elimi-RISM/HNC approach, and Fhe molecular simulati¢Ref. 53 (solid, dash—
nation by a Weighted DistributioSHREWD) quadrature ~901ted: and short-dashed lines, respectively
method®’

Figure 1 exhibits the radial distribution functions be-
tween the water interaction sites and the @n, obtained in the contact region which gives a significant contribution to
from the SC-3D-RISM/HNC procedure, and the 1D-RISM/the solvation free energy. It should be noted, however, that
HNC approach as well as the molecular simulations for thefor liquids with strong hydrogen bonding like water and
system with the same potential parametérit. is evident methanol, the effect of these bridge corrections on the ion
that as compared to the conventional 1D-RISM theory, thesolvation structure is questionable. Lombardero and
3D treatment at hand does essentially improves the predico-workers® and Richardi, Millot, and Fri€ also found
tion of the positions of the first and second solvation shellthat the use of the hard-sphere bridge functions within the
peaks and the minima. Notice that the unphysical penetratioMOZ/RHNC approach scarcely affects both the structure and
of water hydrogen sites towards the negatively charged Clthermodynamic properties of these liquids at ambient condi-
ion, typical for the former is completely eliminated in the tions. They reasonably attributed this failure to the shape
latter. The extrema of the hydrogen—chlorine distributiondiscrepancy between the spherically symmetric bridge func-
now fit well the simulation results. The position of the first tions of hard spheres which form closely packed structures,
peak of the oxygen—chlorine distribution is significantly im- and the local geometry of loosely coordinated liquid like
proved too, and the second peak is much better formed araimbient water showing tetrahedral ordering. Nevertheless,
situated closer to the simulation data. This demonstrates thH&iis conclusion should be applied to an ion hydration shell
improved description of the orientational ordering of waterwith caution, and encourages further investigation and search
molecules in the ion solvation shell. As a shortcoming, thefor bridge functions incorporating those geometric features.
present 3D approach underestimates amplitude of the solva- Figure 2 makes a comparison of the radial distribution
tion shell oscillations. To treat this point requires to addfunctions for the water interaction sites and the*Nan.
bridge corrections to the molecular 3D-HNC closu®.  There is some improvement for the first peak height of the
Lombardero and co-workers have shown for moleculahydrogen—sodium distribution in the 3D approach against
liquids?”*® and molecular mixturé8 that the predictions of the 1D-RISM treatment, whereas the predicted height of the
the MOZ equation can be significantly improved by applyingoxygen—sodium peak is worsened. Notice, however, that the
a generalization of the reference hypernetted ck@iANC)  oxygen peak in the SC-3D-RISM approach is noticeably
closur€® with Verlets modified approximatioft This  wider. This yields the oxygen running coordination number
would refine the description of the solvent—ion distributionsof the first solvation sheIN<O3_D(':'T_'SM)=4.9, which is higher
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than the valueN, "’ ~=4.4 following from the 1D-RISM ‘o *
. . . MD
method, and is closer to the simulation o _C>,,=5.8. .
Again, the agreement with simulations could be improved by 2 B
employing bridge corrections, as discussed above for the Sl
water—chlorine radial distributions. R S
Beside the radial distribution functions of solvent sites ‘:222&.'.;.',5.',',,;7, e
QLTI c.: R

. - . S \‘\‘?} XA

around the ion, the SC-3D-RISM approach provides the ori- """\\\\‘\\\\\\\\“‘”llllﬁ

entational dependence of solvent molecules. Equally, it can Q}” ;7::;..::;”\.,(\‘:,

be seen as a 3D spatial distribution function of the ion g S

around the labeled solvent molecule. Figure 3 shows sections -/,

of the 3D distribution of the CI ion around a water mol- ~

ecule, passing through its oxygen. Water oxygens form the

first and second solvation shells around the ©@in that are

of small height about 1.2—1.6 almost everywhere, except for s

the high narrow peaks at the arrangements with the ion lo- % *

cated in front of one of the water hydrogens. The first a'nq:IG. 3. Three-dimensional distribution function between the labeled water

second peaks at these positions reach respectivelyolecule and the Clion, gy o (r), following from the SC-3D-RISM/
max) _ -4 - andg(ma"2 =3.0, even the latter higher than HNC theory for the ion in ambient water. Sections of the 3D water—ion

Gw—cI- w—cl-
. . istribution in the orthogonal plane€OY, XOZ andYOZ passing through
the rest of the solvation shell. The two peaks are attributed tﬂw oxygen sitdupper, middle, and lower plots, respectivelyhe number

the formation of solvation structures of water moleculesgt the peaks shows their height. The water molecule is situated in plane

hydrogen-bonded to the Clon due to the asymmetry of the XOY, and its dipole moment is directed along a The oxygen and

electrostatic field of a water molecule, well known from the hydrogen interaction sites have Cartesian coordineges(0,0,0) A and

1D-RISMHNC2 and 3D-RISM/HNC treatmefft as well "+~ (0-5774%0.8165,0) A.

as simulations®%6 The SC-3D-RISM/HNC theory sub-

stantially improves the predicted positions of the hydrogen

bonding. On orientational averaging, these narrow peaks turfas a relatively large value of abog{y,_c;-=4 (seen as a

into the much lower first peaks of the chlorine—water oxygerpeak in the middle plot

and hydrogen radial distributions of hEig;b@_aé]i:&O and The 3D distribution of the Naion around a water mol-
(maxa =2.3(Fig. 1 and 2. The saddle point between the two ecule is depicted in Fig. 4. It has a single large maximum

Ow-cr-
maxima of the first solvation shellipper plot in Fig. 3 still gf,r\‘,"f‘:f;:SO.S corresponding to the arrangement with the
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FIG. 4. Same as in Fig. 3, but for the Néon.

A. Kovalenko and T. N. Truong

ing to CI", water molecules show a simple dipole-like ori-
entation around the Naion. The two small subpeaks in the
lower plot section of the first hydration shell are just the
YOZsections of the arc ends.

The hydration thermodynamics of the Cind N& ions
in ambient water is shown in Table I. The comparison re-
veals a qualitative agreement of both the 1D-RISM/HNC and
the SC-3D-RISM/HNC approaches with the simulations and
experiment. It follows from both integral equation
theory??>?>4748 and simulations>>°565-%%0f hydration of
simple ions that its thermodynamics as well as structure are
very sensitive to the details of the ion potentials, such as
softness of the ion repulsive core. With the appropriate
choice of the parameters for the site—site interactions, Yu,
Roux, and Karplu® achieved a good agreement between the
1D-RISM/HNC theory and experiment. Our goal, however,
is to show the superiority of the SC-3D-RISM theory over
the site—site one rather than to fit to experimental data by
adjusting the parameters. It is evident that the 3D treatment
noticeably improves the prediction of the solvation energy
and chemical potential as compared to the conventional site—
site approach, which is very sensitive to the behavior of the
solute—solvent distributions in the repulsive core region.
This also results in a noticeable improvement for the both
hydration entropiesAsy andAsp, prone to errors as a dif-
ference between close values calculated. Further improve-
ment can be obtained by refining the parameters of the ion—
water potentials as well as by employing dielectric
corrections. Yu, Roux, and Karpltfsshowed that the simple
dielectric correction in the form of scaling the site—site Cou-
lomb potential by a constalt’®"*brings the thermodynam-
ics of ionic hydration closer to the experimental values. As
has been discussed above, a proper way within a 3D-RISM
theory for an ion—molecular liqufdis to employ the consis-
tent dielectric corrections of Perkyns and Petfitfor the
SC-3D-RISM/HNC approach, this will be done in future
work.

VI. CONCLUSION

We have elaborated a self-consistent 3D-RISM/HNC in-
tegral equation theory for simple ions at infinite dilution in a
polar molecular solvent. The main advantage of the SC-3D-
RISM approach is that it eliminates the inconsistency in the
positions of the ion—solvent site distribution peaks. The latter
is related to the problem of “auxiliary sites” in the conven-
tional, 1D-RISM/HNC theory, and arises due to a strong
alignment of solvent molecules in the solvation shell around
the ion attracting the solvent molecule sites of opposite
charge. The better description of the ion—solvent distribution

Na’ ion facing the water oxygen. The second shell peakfunctions improves the predictions for the solvation thermo-

(max2 _

reaches heiglhg,, “ .+ =2.8. Notice that the first peak is nar- dynamics as well. We tested the proposed theory by the ex-
row in the molecular plane where it is concentrated mainly aample of hydration of the Naand CI” ions in ambient water
the OX axis (upper plo}, whereas it becomes a wide “arc” at infinite dilution. The hydration structure obtained from the
stretched over the oxygen in perpendicular to the molecul&C-3D-RISM/HNC theory shows a substantially better
plane (middle plod. Again, such arrangements of the Na agreement with simulations than that following from the 1D-
ion on the arc around the oxygen correspond to the directionRISM/HNC approach. A noticeable improvement of the pre-
usually occupied by hydrogen bonds around a water moldictions for the hydration thermodynamics is also observed.

ecule in uniform ambient water. Unlike the hydrogen bond-

The SC-3D-RISM/HNC theory can be further advanced
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TABLE I. Thermodynamics of solvation of the Cland N& ions in ambient water.

Ap (Ap(e9)?2 A€ (Ael®9)? Ah Asy Asp
Approach (kcal/mo) (kcal/mo) (kcal/mo) (cal/mol) (cal/mol)
ClI~
SC-3D-RISM/HNC —79.5(—48.5? —93.5(—-53.792 —98.9 —47.0 —64.8
1D-RISM/HNC —-83.9 —100.1 —105.7 —54.3 —-73.0
MDP —86.0 —16.
experiment -80.5 —88.7 —20.1° —25.8
-73.¢9 -81.¢ -26.5
Na*
SC-3D-RISM/HNC —80.1(—48.5% —90.2(-53.72 —95.6 -34.0 -52.0
1D-RISM/HNC —-77.3 —88.8 —-94.1 —38.6 —56.4
MDP —82.9 —14.
experiment —89.6° -99.9 —23.8 —-34.5
-96.4 —106.6 -34.2

&/alues in parentheses are the electrostatic contributions in the excess chemical potential and energy of hydra-
tion, given by expression@?) and(50), respectively.

PFrom Reference 53.

°From Reference 62.

YFrom Reference 63.

°From Reference 64.

in a number of points. It can be readily generalized to theThe proposed SC-3D-RISM approach would allow one to
case of finite ionic concentrations by including ions into theelaborate short-range bridge corrections to the RISM theory
solvent surrounding the labeled solvent molecule and ionfor charged and polar molecular solutes.
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