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Thermochemistry of solvation: A self-consistent three-dimensional
reference interaction site model approach
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We developed a self-consistent three-dimensional reference interaction site model integral equation
theory with the molecular hypernetted chain closure~SC-3D-RISM/HNC! for studying
thermochemistry of solvation of ionic solutes in a polar molecular solvent. It is free from the
inconsistency in the positions of the ion–solvent site distribution peaks, peculiar to the conventional
RISM/HNC approach and improves the predictions for the solvation thermodynamics. The
SC-3D-RISM treatment can be readily generalized to the case of finite ionic concentrations,
including the consistent dielectric corrections to provide a consistent description of the dielectric
properties of ion–molecular solution. The proposed theory is tested for hydration of the Na1 and
Cl2 ions in ambient water at infinite dilution. An improved agreement of the ion hydration structure
and thermodynamics with molecular simulation results is found as compared to the conventional
RISM/HNC treatment. ©2000 American Institute of Physics.@S0021-9606~00!51941-2#
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I. INTRODUCTION

Understanding and prediction of solvation properties
electrolytes is of paramount importance for solution chem
try as well as for biological systems. The presence of ion
aqueous solution has an essential effect on conformati
stability and binding of proteins and DNA.1–3 Ionic effects
play a central role at all levels of DNA structura
organization.4,5 Molecular simulations can reliably mode
solvation of small molecules, whereas the solvation therm
dynamics of biomolecules in electrolyte solution constitu
a considerable challenge for simulation because of their
size as well as long-range ionic correlations in solution
typically intermediate and low salt concentrations. Altern
tively, these problems can be resolved within integral eq
tion theory of liquids. An integral equation theory providin
realistic description for molecular liquids is the reference
teraction site model~RISM!.6 It was pioneered by Chandle
and Andersen7 and then extended by Hirata and co-worke
to dipolar and quadrupolar molecular liquids8,9 and to ions in
a polar molecular solvent10 by adapting the hypernette
chain ~HNC! closure. As an advantage over other integ
equation theories for molecular liquids,6 the RISM can easily
handle the description of solution comprising complex po
atomic species and to take into account such chemical sp
ficities as hydrogen bonding.11 Pettitt and Rossky12 em-
ployed the extended RISM approach to qualitatively pred
liquid state structure for three-site models of water. T
RISM integral equation theory has been successfully use
calculation of the structural and thermodynamic properties
various chemical and biological systems and solutions.11
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Along with its merits, the RISM/HNC approach suffe
from a number of defects. It is known to yield essentia
trivial results for the dielectric constant of a polar molecu
liquid,8–10,13,14and to fail at finite salt concentrations due
an inherent dielectric inconsistency.15,16Perkyns and Pettitt15

have obviated this problem by introducing consistent corr
tions that are similar to a bridge function of molecular the
ries. The dielectrically consistent DRISM/HNC approa
yields accurate thermodynamics and structure in 1-1
aqueous solutions at finite concentrations.15

Another shortcoming of the RISM/HNC theory lies i
the imperfect treatment of excluded volume of interacti
sites constituting the molecular species. It results, for
stance, in substantial overestimation of the excess chem
potential of hydrophobic hydration and its wrong depe
dence on the hydrophobic solute size.19,20 This mistreatment
can be corrected by employing closures other than the H
approximation21 or by introducing bridge corrections of var
ous parameterized form.23,24 A well-documented manifesta
tion of the excluded volume inconsistency is related to
problem of so-called auxiliary sites that label points in
molecule but contribute nothing to the intermolecu
potential.6,17,18It also shows up in the site–site radial distr
butions between strongly attracting interaction sites situa
inside molecular cores, which are predicted to approach e
other closer than is allowed by the steric constraints of
molecular shapes. Although the RISM integral equation
counts for the intramolecular bond constraints by means
the intramolecular matrix, its HNC closure treats the inter
tion sites of molecules as free, nonbonded species. As
example, the RISM/HNC approach yields the separation
tween the peaks of water oxygen and hydrogen interac
sites around an anion in aqueous solution to be somew
larger than the OH intramolecular bond length in a wa
molecule.16,22,25
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An alternative way to consider molecular systems is
use the Ornstein–Zernike~OZ! integral equation generalize
to the six-dimensional~6D! case of orientationally depende
interactions, or the molecular Ornstein–Zernike~MOZ!
equation,6 and then to employ Blum’s method of rotational
invariant expansions in the generalized spheri
harmonics.26 The MOZ methodology was successfully a
plied to models of real molecular fluids27 and organic
solvents.28 Recently, this treatment has been employed
Richardi, Millot, and Fries29 for different models of water
and methanol, and by Lombardero and co-workers30 to de-
scribe the simple point charge~SPC! water in a variety of
thermodynamic states. By using the method of rotational
variant expansions, Beglov and Roux31 formulated the three-
dimensional~3D! generalization of the OZ equation with th
mean spherical approximation~MSA! closure for the distri-
bution of a liquid of spherical molecules with an embedd
dipole around a polar solute of arbitrary form. Richar
Fries, and Krienke32 developed the MOZ/HNC description o
solvation of spherical ions in acetonitrile and acetone. In
above works, the MOZ integral equation approach provide
detailed, complete information about the solvation structu
and the solvation thermodynamics in good qualitative agr
ment with molecular simulations. As an advantage, it d
not share the above-mentioned problems of the RISM in
gral equation theory with excluded volume. However, suc
treatment quickly becomes increasingly cumbersome w
asphericity of solvent molecules because of the slow con
gence of rotational invariant expansions, especially in
general case of solvent molecules not possessing any
tional symmetry like acetonitrile or acetone in Ref. 32. Th
justifies further efforts in improvement of the RISM theo
and, in particular, development of its 3D version.

A much more detailed solvation structure informati
can be obtained from the 3D generalization of the RIS
theory which yields 3D distribution profiles of solvent inte
action sites around a solute of arbitrary shape. It was
derived by Chandler, McCoy, and Singer in a general fo
within the density functional method for nonuniform pol
atomic systems,33 and recently developed by Cortis, Rossk
and Friesner for a one-component dipolar molecular liquid34

by Beglov and Roux for water and organic molecules
water,23,35 and by Kovalenko and Hirata for water,36,37

metal–water interfaces,36,39 3D potentials of mean force fo
molecular ions in a polar organic solvent,38 and ion pairs in
water.40 A self-consistent 3D-RISM description of a on
component molecular liquid is obtained by considering o
molecule as a ‘‘solute’’ immersed in solvent of other mo
ecules of liquid to calculate the 3D ‘‘solvent–solvent’’ co
relations, and then averaging them for the solute orientat
to get the site–site solvent–solvent correlation functio
used as input to the 3D-RISM solute–solvent equations.34,37

The 3D-RISM approach allows one to calculate the pot
tials of mean force in ion-molecular solution directly as
difference between the chemical potential of solvation o
cluster of solutes and of individual ones, and to obtain
solvation structure around the cluster of solutes in detail.40 It
should be noted that accurate calculation of solvation th
modynamics for ionic solutes in a polar molecular liqu
o
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requires special corrections for a finite size of the super
which is employed within the 3D-RISM method.40

A considerable advantage of the 3D-RISM theory
proper description of the excluded volume of a solute, ow
to the explicit account of its 3D shape. By formulating
self-consistent 3D-RISM approach for ions in a polar m
lecular liquid, this allows us to eliminate the abov
mentioned problem with violation of steric constraints in t
ion–solvent site distributions. In this procedure, we obt
the 3D potential of mean force between the ion and o
molecule of liquid, each considered as solutes immerse
solvent of liquid. Radial distribution functions between th
ion and the interaction sites of solvent molecules are requ
at input, which are calculated in a self-consistent loop
orientational averaging of the 3D distribution of the io
around the labeled molecule of liquid. The whole approa
can be readily generalized to the case of a finite ionic c
centration; this will be considered in further work. The se
consistent 3D-RISM theory~SC-3D-RISM! we propose be-
low improves the description of the solvation structure a
thermodynamics of simple ions in a polar molecular liquid
compared to the conventional, one-dimensional~1D! RISM
method. Section II presents the SC-3D-RISM/HNC equ
tions for an ion at infinite dilution. Section III gives a der
vation of the expressions for the excess chemical poten
energy, entropy, and enthalpy of solvation. Section IV int
duces corrections necessary for proper account of the e
of the long-range asymptotics of the correlation functions
the solvation thermodynamics. Section V illustrates the
proach by calculation of the solvation structure and therm
dynamics for Na1 and Cl2 ions in ambient water.

II. SELF-CONSISTENT 3D-RISM THEORY FOR A
SIMPLE ION IN A POLAR MOLECULAR LIQUID

The orientation-dependent distribution function betwe
two molecular species immersed in a molecular solvent
be obtained from the 3D-RISM equations for a solu
solvent mixture at infinite dilution.38 In this procedure, the
solvent contribution to the orientationally dependent pot
tial of mean force between two molecular solutes throu
interaction sites of solvent molecules is calculated as a c
volution of the 3D site correlation functions of solvent m
lecular sites around each of the solutes. The solute–so
distribution thus has full six-dimensional orientational d
pendence, whereas solvent molecules are described a
interaction site level with their orientations averaged out. F
a simple ion immersed in a polar molecular liquid, the pro
lem simplifies to a 3D distribution of the ion around on
solute molecule of liquid, both immersed in the solvent
liquid. The MOZ equation for the solvent–ion correlations
infinite dilution is written as6

hsi~r ,V!5csi~r ,V!1
r

V E dr 8dV8css

3~ ur2r 8u,V,V8!hsi~r 8,V8!, ~1!

where the superscripts ‘‘i’’ and ‘‘ s’’ denote the ion and sol-
vent; h andc are, respectively, the total correlation functio
~TCF! and the direct correlation function~DCF! that depend
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on the separationr between the corresponding species and
orientationV of solvent molecules;r is the solvent density
We need to reduce in part the orientational dependence o
6D argument ofcss(r ,V,V8) by integrating out the orienta
tional degrees of freedom in~1!. Notice that due to the isot
ropy of the bulk system under consideration, one orien
tional degree of freedom of the Euler anglesV and V8 is
dependent. That is, the 6D argument comprises the distanr
and five independent angles inV, V8. In what follows, we
fix the third anglec in the orientationV5(w,u,c), which
brings the 6D argument into the form of a vector between
particles and the 3D orientation of the second partic
(r ,V,V8)5(r ,w,u,V8)[(r ,V8). Similarly to Refs. 34, 38,
and 39, we assume the decomposition of the DCF into pa
contributions of sites of a solvent molecule

css~r ,V,V8![css~r ,V8!5(
a

ca
ss~r1r sa!, ~2!

where r sa is the shift of interaction sitea of the solvent
molecule with respect to its origin. Here the partial, 3D s
DCFsca

ss(r ) do not depend on the solvent molecule orien
tion, V8, since each its site is considered to be spheric
symmetric. This basic assumption of additivity in the 3
RISM theory is justified since the DCF has the long-ran
asymptotics of the interaction potential which is supposed
be additive,css(r ,V8);2b(aua

ss(ra) for r→`, whereb
51/kBT is the inverse temperature, andra is the position of
interaction sitea of solvent molecule 2 with respect to so
vent molecule 1. On transformation to the reciprocal spa
the decomposition~2! takes the form

css~k,V8!5(
a

ca
ss~k!exp~2 ik•r sa!, ~3!

in which the dependence on solvent orientationV8 goes into
the phase factor exp(2ik•r sa). In the reciprocal space, th
convolution in the MOZ equation~1! turns into multiplica-
tion, and substitution of relation~3! allows one to carry out
the integration over the orientationV8. This reduces the 3D
solvent–ion TCF to the radial one between the ion and
vent sitea, according to the definition of the orientation
average

ha
si~r !5

1

V E dV rh
si~r sa1r !, ~4a!

ha
si~k!5

1

V E dVkh
si~k!exp~2 ik•r sa!. ~4b!

Thus, we obtain the 3D-RISM equation for the 3D corre
tionshsi(r ) andcsi(r ) of the ion around the solvent molecu

hsi~r !5csi~r !1r(
a

ca
ss~r !* ha

si~r !, ~5!

whereha
si(r ) is the radial TCF between the ion and solve

site a, ca
ss(r ) is the 3D-DCF of solvent sitea around a la-

beled molecule in pure molecular solvent, and ‘‘* ’’ means
convolution in direct space. The 3D site correlation functio
are specified on a uniform 3D grid in a rectangular superc
n
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and the convolution in~5! is calculated by transformation t
reciprocal space with the 3D fast Fourier transfo
~3D-FFT!.41

To treat the problem self-consistently, the ion–solve
site radial TCFsha

si(r ) are calculated numerically by th
orientational averaging using Eqs.~4!. As proposed in Ref.
37, we apply the averaging to the Fourier expansion
hsi(r ). It simply reduces the expansion in 3D plane waves
that in spherical ones

ha
si~r !5

1

V E dV r(
k

hsi~k!exp~2 ik•r sa!

5(
k

sin~kr !

kr (
uku5k

exp~2 ik•r sa!hsi~k!, ~6!

with the phase factor exp(2ik•r sa) arising due to the shift of
the averaging center from the origin to sitea. The orienta-
tional averaging procedure thus consists in performing
3D-FFT, summing the expansion coefficients with equal
solute values of wave vectork, and then synthesizingha

si(r )
of spherical waves on a linear one-dimensional~1D! radial
grid. Finally, the radial distribution functions are transform
by the linear 1D-FFT, and then splined to obtainha

si(k) at
wave vector absolute valuesk necessary for the 3D convo
lution in ~5!. The parameters of the 1D grid are chosen
such a way as to override the resolution of the 3D grid in r
and reciprocal spaces. The functionsha

si(r ) are calculated by
Eq. ~6! inside a sphere,r ,Lmax/2, whereLmax is the largest
dimension of the supercell,Lmax5max(Lx ,Ly ,Lz), and are
padded with zeros outside it. The above procedure of or
tational averaging is substantially faster than quadrat
schemes, for example, Lebedev’s quadrature method
ployed by Cortis, Rossky, and Friesner.34 As we have dis-
cussed in Ref. 37, the approach given by Eq.~6! distorts the
averaged radial correlation function by an artifact of sm
oscillations with the frequency equal to the cutoff of th
plane wave set used. However, this is of no importance s
such oscillations are smoothened out in the convolution p
cedure in~5!, and introduces a negligible error.

To close the solvent-ion 3D-RISM equation~5!, we use
the HNC approximation which is proved to be adequate
ion-molecular systems with long-range electrosta
interactions.6 The molecular 3D-HNC closure is written as

gsi~r !5exp~2busi~r !1hsi~r !2csi~r !!, ~7!

whereusi(r ) is the 3D interaction potential between the io
and the molecule of liquid, andgsi(r )5hsi(r )11 is the 3D
distribution function of the ion around the molecule. Wi
this closure, the solvent-ion 3D-RISM/HNC equations to
solved can be cast in the form

hsi~r !115expS 2busi~r !1r(
a

ca
ss~r !* ha

si~r ! D , ~8!

whereha
si are calculated by using Eq.~6!. Notice that unlike

the 3D-HNC approximations for the 3D correlations of so
vent interaction sites around the solute,34–40 the molecular
3D-HNC closure~7! relates the 3D correlations between t
ion and theentire solvent molecule. This provides consi
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tency of the solvent–ion correlations, in particular, ensu
the steric constraints for the ion–solvent site distributions

We determine the 3D site DCFs of pure solvent arou
its labeled molecule,ca

ss(r ), from the SC-3D-RISM/HNC
equations for a one-component molecular liquid37

hg
ss~k!5(

a
ca

ss~k!~vag
ss ~k!1rhag

ss ~k!!, ~9!

ga
ss~r !5ha

ss~r !115exp~2bua
ss~r !1ha

ss~r !2ca
ss~r !!,

~10!

where the radial TCF between sitesa and g of two mol-
ecules in pure solvent,hag

ss (r ), are calculated by the orienta
tional averaging

hag
ss ~r !5

1

V E dV rhg
ss~r sa1r !

5(
k

sin~kr !

kr (
uku5k

exp~2 ik•r sa!hg
ss~k!. ~11!

Hereua
ss(r ) is the interaction potential between solvent sitea

and the labeled solvent molecule, andvag
ss (r )5d(r 2 l ag) is

the intramolecular correlation matrix of a solvent molecu
with site–site separationsl ag , or in reciprocal space
vag

ss (k)5sin(klag)/(klag). Although Eqs.~9!–~11! provide a
consistent description of the labeled molecule of the solv
they do not resolve the problem of auxiliary sites for t
solvent–solvent correlations. However, this is not cruc
since such an artifact manifests in the correlations betw
polar molecules much less than in those between ions
polar molecules. Further improvement would require eit
treatment of 6D solvent–solvent correlations or inclusion
bridge corrections in the 3D-HNC closure for the 3D s
correlations~10!. Such an improvement will be address
elsewhere.

An alternative formulation of the solvent-ion 3D-RISM
equation can be obtained by the orientational reduction of
MOZ equation ~1! with the term representing interactio
over the ‘‘third particle’’ written as*d3hss(13)csi(32). It
has the form

hsi~k!5csi~k!1r(
a

ha
ss~k!ca

si~k!, ~12!

with the ion-solvent site radial DCFca
si(r ) obtained self-

consistently from the approximate decomposition of the 3
DCF csi(r ) into partial site contributions similarly to~2!

csi~r !5(
a

ca
si~ ur2r sau!. ~13!

The latter can be performed by orientationally averaging
3D-DCF

c̄a
si~r !5

1

V E dV rc
si~r sa1r !, ~14!

and then decomposing theaveragedion–solvent site radia
DCFs c̄a

si into thepartial site contributionsca
si by using the

relation following from the assumption of Eq.~13!34,38,39
s

d

t,

l
n

nd
r
f

e

-

e

c̄a
si~k!5(

g
vag

ss ~k!cg
si~k!. ~15!

In a similar manner, the 3D site DCFs of pure solve
can be determined alternatively from the method propo
by Cortis, Rossky, and Friesner34 by the molecular site
Ornstein–Zernike integral equation with the HNC appro
mation ~MSOZ/HNC!, which can be written as

hg
ss~k!5(

a
~ca

ss~k!vag
ss ~k!1rha

ss~k!cag
ss ~k!!, ~16!

ga
ss~r !5ha

ss~r !115exp~2bua
ss~r !1ha

ss~r !2ca
ss~r !!,

~17!

with the orientational averaging of the solvent 3D site DC
ca

ss(r ) and then the decomposition of theaveragedsite–site
DCFs c̄ag

ss (r ) into the radial site–site DCFscmg
ss (r )

c̄ag
ss ~r !5

1

V E dV rcg
ss~r sa1r !, ~18!

c̄ag
ss ~k!5(

m
vam

ss ~k!cmg
ss ~k!. ~19!

It should be emphasized that the solvent–ion SC-3
RISM equations in the formulation~12! with the 3D-DCF
averaging and decomposition relations~14! and ~15! arenot
equivalent to Eq.~5! with the 3D-TCF orientational averag
ing given by Eq.~4!. The additive approximation in Eq.~13!
or ~15! is exact only in the long-range asymptotic limit an
thus decreases the level of accuracy of the solvent–ion
relations. Furthermore, calculation of the ion–solvent site
dial DCF ca

si from relation ~15! involves the inverse of the
intramolecular matrix, which has a singularity atk50. Due
to the electroneutrality condition, the singularity is cancell
out in the summation over interaction sitesg, which requires
special evaluation of the averagedc̄a

si(k50) and introduces
additional numerical errors. In the case when the approxim
tion ~13! becomes too crude, the decomposition proced
can cause instability and even divergence.

Similar properties distinguish the solvent–solvent S
3D-RISM/HNC equations~9!–~11! from the MSOZ equa-
tions~16!–~19! of Cortis, Rossky, and Friesner.34 The former
do not involve the additive approximation~19!, and employ
simply the orientational averaging of the 3D site TCFsha

ss(r )
to obtain the radial site–site TCFshag

ss (r ), which is a nu-
merically stable procedure. In contrast, the latter need firs
orientationally average the 3D site DCFsca

ss(r ), and then to
decompose the averaged radialc̄ag

ss (r ) into thepartial site–
site DCFscag

ss (r ) according to the additive approximatio
~19!. As has been said, this is exact only in the asympto
limit, and on the other hand, can cause numerical instab
which has been observed by Cortis, Rossky, and Friesn34

in the case of a liquid of highly charged polar molecules.
Numerical solution of a 3D integral equation constitut

a significant challenge. We converged the solvent–ion
well as solvent–solvent SC-3D-RISM/HNC integral equ
tions by means of the modified direct inversion in the ite
tive subspace~MDIIS! method elaborated by Kovalenko
Ten-no, and Hirata.37 It has been presented in detail in Ref
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37, 38, and 40, and so we only briefly sketch the basic ite
tive step used in computing the correlation functions. W
solve the pure solvent set, Eqs.~9!–~11!, for the 3D site
indirect correlation functiontg

ss(r )5hg
ss(r )2cg

ss(r ). Inserted
into the HNC closure~10!, it yields gg

ss(r ) and thencg
ss(r ).

Thereafter we orientationally averagegg
ss(r ) by using the

resummation in reciprocal space~11! to obtain the radial
site–site TCFshag

ss (r ), and finally calculatehg
ss(r ) from the

3D-RISM equation~9!. The vector residual of the SC-3D
RISM/HNC equations which is a functional to be zeroed
the process of solution,Rg

ss(r )5Rg
ss@$tg

ss(r )%#, is defined as
the difference of the 3D site TCFs following from the 3D
RISM equation and the 3D-HNC closure:37

gg
ss~r !5exp~2bug

ss~r !1tg
ss~r !!,

hag
ss ~r !5^gg

ss~r sa1r !&Vr
21,

~20!

hg
ss~r !5(

a
~ga

ss~r !212ta
ss~r !!* ~vag

ss ~r !1rhag
ss ~r !!,

Rg
ss~r !5gg

ss~r !212hg
ss~r !.

Given the solvent–solvent correlations, the solvent–ion
Eqs. ~5!–~7!, are solved similarly for the 3D solvent–io
indirect correlation functiontsi(r )5hsi(r )2csi(r ). The re-
sidualRsi(r )5Rsi@$tsi(r )%# is setup by

gsi~r !5exp~2busi~r !1tsi~r !!,

ha
si~r !5^gsi~r sa1r !&Vr

21,

~21!

hsi~r !5gsi~r !212tsi~r !1r(
a

ca
ss~r !* ha

si~r !,

Rsi~r !5gsi~r !212hsi~r !.

We start the MDIIS iterative procedure from the initi
vector, on the one hand, possessing the long-range asym
ics of tg

ss(r ) which is essentially the electrostatic asymptot
of the DCF cg

ss(r ) but of opposite sign, and on the oth
hand, fitting its behavior inside the repulsive cores wher
goes to a constant. It was first noticed by Ng42 that this
delivers a very good estimate of the DCF for a on
component plasma. Such a guess represents a major p
the solution for charged molecular systems in both 1D a
3D cases, which allows us to begin convergence at onc
given temperature and full molecular charge.36–40 We thus
avoid the procedures of gradually decreasing tempera
~the so-called ‘‘cooling’’! and increasing site charge
~‘‘charging’’ ! usually employed to facilitate
convergence.9,10,34,43This greatly reduces computational e
penses. It should be noted that the sum of the bare Coul
potentials of the point charges at the interaction sites is p
as the initial guess for the DCF. The latter follows the run
the interaction potential~with opposite sign! practically
down to the bottom of the attractive well, after which it tur
to the short-range behavior. The potential minimum usua
results from the competition of the Coulomb attraction a
the short-range repulsive core. Although it provides the c
rect asymptotics of the DCFs at long-range to cancel
with the interaction potential in the exponent of the HN
a-
e

t,

tot-

it

-
t of
d
at

re

b
or
f

y
d
r-
t

closure, in the first peak region the Coulomb attraction s
stantially exceeds the well depth of the total interaction p
tential. This overflows the HNC exponent at the iterati
start. Therefore, the initial guess of the DCF should inclu
the Coulomb potential properly reduced in the region of
repulsive core. There are several functional forms of su
‘‘damping.’’ 42,36–40In the 3D case, it is conveniently relate
to the Ewald summation employed within the supercell te
nique to synthesize the electrostatic potential of a solute
the supercell grid. Namely, we specify the starting vector
the electrostatic potential of site chargeqg in the field of the
site charges of the labeled solvent moleculeqa but smeared
by the Gaussian distribution to half-widths

tg
ss~0!~r !5

bqg

Vcell
(
kÞ0

(
a

qa

4p

k2 expS ik~r2ra!2
k2s2

4 D ,

~22!

whereVcell is the supercell volume, and the summation ov
wave vectork is carried out over its 3D grid values by mea
of the 3D-FFT. The initial guess for the solvent–ion corr
lation, tsi(0)(r ), is specified by the same expression~22! but
for the ion chargeqi in the field of the smeared molecula
chargesqa . The smearing parameters is to be roughly ad-
justed so as to provide a moderate value of the root m
square residual at start. Notice also that the MDIIS proced
can accidentally send the iterated vector far from the so
tion, and then it should be restarted from the iterated vec
with the minimal residual.37,38,40In order to avoid overflow
of the HNC exponent is such a case, we put an upper limi
10 on the exponent argument. This prevents overflow in
ruptions in the computational procedure while not influen
ing the converged distributions, for which it is well belo
this level.

III. THERMODYNAMICS OF SOLVATION

A close analytical expression for the solvation free e
ergy has been derived within the OZ/HNC theory by Mor
and Hiroike44 and generalized to the RISM/HNC method b
Singer and Chandler.45 It can be trivially extended to the
3D-RISM/HNC approach.38

Since we consider solvation of a single ion, below
excess thermodynamic quantities are implied in the limit
infinite dilution. The excess chemical potential of solvati
of an ion in a molecular solvent is obtained by the comm
procedure of ‘‘switching on’’ the solute–solvent interactio
that can be written as

Dm5rE drE
0

usi~r !
dusi~r !gsi~r !. ~23!

If the 3D solvent–ion correlations are obtained from t
MOZ/HNC equations~1! and ~7!, the integration over the
interaction in~23! can be performed analytically. Substitu
tion of the 3D solvent–ion indirect correlation functiontsi(r )
from the MOZ equation~1! into the 3D-HNC closure~7!
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hsi~r ,V!115expS 2busi~r ,V!1
r

V E dr 8dV8css

3~ ur2r 8u,V,V8!hsi~r 8,V8! D , ~24!

and functional variation of expression~24! gives after simple
rearrangement

bgsi~r ,V!dusi~r ,V!

52dhsi~r ,V!1
r

V E dr 8dV8css~ ur2r 8u,V,V8!

3dhsi~r 8,V8!1hsi~r ,V!
r

V E dr 8dV8css

3~ ur2r 8u,V,V8!dhsi~r 8,V8!. ~25!

On insertion into~23!, the first and second terms of expre
sion ~25! can be immediately integrated over the interactio
Taking into account the MOZ equation~1!, and adding inte-
gration over orientationV to symmetrize the third term, we
have

bDmHNC52rE drcsi~r !

1
r2

V2 E drdr 8dVdV8E
0

usi~r !
hsi~r ,V!css

3~ ur2r 8u,V,V8!dhsi~r 8,V8!. ~26!

The last integral over the interaction in~26! is taken by using
the symmetry of the variation

d~hsi~r ,V!css~ ur2r 8u,V,V8!hsi~r 8,V8!!

5dhsi~r ,V!css~ ur2r 8u,V,V8!hsi~r 8,V8!

1hsi~r ,V!css~ ur2r 8u,V,V8!dhsi~r 8,V8!. ~27!

Using Eq.~1!, this results in the expression for the chemic
potential of solvation of the ion in the familiar closed an
lytical form

DmHNC5rkTE dr$ 1
2~hsi~r !!22 1

2h
si~r !csi~r !2csi~r !%.

~28!

In the present approach, we determine the 3D solve
ion TCF from the 3D-RISM equation~5!. Making functional
variation of the 3D-RISM/HNC equation~8!, and inserting
the result into~23! with allowance for~5! gives

bDmHNC52rE drcsi~r !1r2E drdr 8E
0

usi~r !
hsi~r !

3(
a

ca
ss~r2r 8!dha

si~r 8!. ~29!

The latter term in this expression cannot be integrated a
lytically over the interaction since the variation
.

l

t–

a-

d~hsi~r !ca
ss~r2r 8!ha

si~r 8!!

5dhsi~r !(
a

ca
ss~r2r 8!ha

si~r 8!1hsi~r !

3(
a

ca
ss~r2r 8!dha

si~r 8!, ~30!

does not possess the symmetry as in Eq.~27!. Nevertheless,
taking into account the decomposition~2! employed in the
derivation of the 3D-RISM integral equation~5!, the second
term of expression~29! is equivalent to that in~26!, and the
variation~30! is same as~27!. Therefore, within the additive
approximation~2!, the solvation chemical potential obtaine
from the 3D-RISM/HNC equations~5! and~7! does take the
form as in Eq.~28!.

The excess energy of solvation can be obtained by
ing the isochoric temperature derivative46–48

D«5S ]~bDm!

]b D
V

5Dm1TDsV , ~31!

where DsV is the excess entropy at constant volume.
alternative decomposition of the excess chemical potentia
solvation into the excess enthalpyDh and the excess entrop
DsP at constant pressure can be achieved by the use o
isobaric temperature derivative49

Dh5S ]~bDm!

]b D
P

5Dm1TDsP . ~32!

The difference between the two entropic terms is given b48

T~DsP2DsV!5Dh2D«5TaPrS ]Dm

]r D
T

, ~33!

whereaP5(](logV)/]P)P is the isobaric thermal expansio
coefficient of solvent.

Applying Eq. ~31! to the solvation chemical potentia
~28! yields the solvation energy in the form

D«5rkTE drbusi~r !gsi~r !

1 1
2rkTE dr$csi~r !dThsi~r !2hsi~r !dTcsi~r !%,

~34!

wheredTf si(r )5T(] f si(r )/]T)r ~f si stands forcsi and hsi!
are the temperature derivatives of the 3D correlation fu
tions. Although they can be obtained by solving integ
equations derived by differentiation of the RISM/HN
ones,25,47,48 we found it is much simpler to calculate the
directly by using the central finite differencing approxim
tion

dTf si~r !.T
f si~r ;T1DT!2 f si~r ;T2DT!

2DT
. ~35!

In expression~34!, the former term is the average solute–io
interaction energy, and the latter is the solvent reorganiza
energy.
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The solvation enthalpy obtained from Eqs.~33! and~34!
is written as

Dh5D«1TaPFDmHNC1 1
2rkTE dr$hsi~r !drcsi~r !

2csi~r !drhsi~r !%G , ~36!

wheredr f si(r )5r(] f si(r )/]r)r are the temperature deriva
tives of the 3D correlation functions, and are calculated
the central finite differencing as in Eq.~35!.

IV. ELECTROSTATIC CORRECTIONS FOR FINITE
SIZE OF THE SUPERCELL

The SC-3D-RISM approach requires special treatm
for the electrostatic asymptotics of the correlation functio
representing ordering of polar molecular solvent in the pr
ence of an ion. However, they are somewhat different fr
the case of the 3D-RISM/HNC equations for the correlatio
of polar molecular solvent sites around an ionic solute40

because we instead consider those of an ion around one
solvent molecule regarded as a solute. The 3D solvent–
DCF now has the asymptotics of an ion–dipole rather th
Coulomb potential,

csi~ lr !~r !52bFsi~r !52bqi(
a

qa

ur2rau
;2bqi

ds•r

r 2 ,

~37!

where qi is the ion charge, andds5(aqara is the dipole
moment of a solvent molecule comprising site chargesqa .
Moreover, it is obvious from the definition of the potential
mean force,wsi(r )[2kT log(gsi(r ));2kThsi(r ), that the
3D solvent–ion TCF has a similar ion–dipole asymptot
but scaled by the dielectric screening. It is the long-ran
asymptotics of the potential of mean force between the m
lecular dipole and the ion in a dielectric continuum

hsi~ lr !~r !52bFsi~r !/eRISM, ~38!

whereeRISM is the dielectric constant of solvent in the RIS
description.

The solvent–ion SC-3D-RISM/HNC equations~5!–~7!
together with the solvent–solvent ones~9!–~10! yield the
same trivial dielectric constant as that following from t
conventional 1D-RISM/HNC theory6,13,50

eRISM511 4
3pbrds

2. ~39!

This is essentially a result of the fact that the 3D-HNC a
proximation ~10! is applied to 3Dsite correlations that in-
volve orientational averaging. The latter enforces an io
dipole asymptotics of the solvent 3D site DCFsca

ss(r ). It
leads to the above trivial dielectric constanteRISM by the
solvent route when inserted into the solvent–solvent 3
RISM integral equation~9!, and further by the solute rout
from the solute–solvent 3D-RISM equation~5!. Perkyns and
Pettitt15 showed that the 1D-RISM theory prediction for th
dielectric constant can be essentially improved by introd
tion of bridge corrections to the solvent–solvent correlatio
ensuring the dielectric consistency of the RISM approach.
a straightforward extension, Kovalenko and Hirata40 have
y
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adapted this correction to the 3D-RISM/HNC theory for
ionic molecular solute in a polar molecular solvent. The S
3D-RISM approach at hand can be improved in a sim
manner. We postpone a detailed consideration of its die
tric properties and elaboration of such a dielectric correct
to future works.

The SC-3D-RISM/HNC integral equations are solved
means of the supercell technique, and the electrostatic pa
the 3D periodic potentialusi(p)(r ) between the ion and the
periodic supercell images of the labeled solvent molecul
calculated by means of the Ewald summation method51

Fsi~p!~r !5
qi

Vcell
(
kÞ0

(
a

qa

4p

k2 expS ik•~r2ra!2
k2d2

4 D
1qi(

a
qa

12erf~Dr a /d!

Dr a
, ~40!

where Vcell is the supercell volume, the summation ov
wave vectork is carried out over its 3D grid values by mea
of the 3D-FFT, andd is the half-width of Gaussian smearin
of site chargesqa of the solvent molecule. Because the com
pensating charge potential decays on lengthd which is typi-
cally much smaller than the supercell size, its direct-sp
summation over the periodic images of the solute is repla
in ~40! with tabulation on the supercell grid, with separatio
Dr 2 from molecular sitea determined subject to the mini
mum image convention,51 Dr j ,a5min(r j2r j ,a1njL j ), j
5x,y,z. Within this supercell treatment, the 3D solvent–io
DCF and TCF acquire theperiodic long-range asymptotics

csi~plr !~r !52bFsi~p!~r !, ~41!

hsi~plr !~r !52bFsi~p!~r !/eRISM. ~42!

Hünenberger and McCammon52 found for computer
simulations that an artificial periodicity imposed by the u
of the Ewald or related methods produces significant err
in the solvation free energy of an ion in a dielectric co
tinuum. Kovalenko and Hirata40 showed that for an ionic
solute in polar molecular solvent, the distortion of the 3
solute–solvent correlation functions brought about by
3D-RISM supercell treatment results in essential mistre
ment of the solvation thermodynamics. For instance, the
ror in the solvation chemical potential of a univalent simp
ion in ambient water amounts to 35 kcal/mol,40 which is
close to the effect of the periodicity artifact in molecula
dynamics simulations for a similar system.53 It can be can-
celed out with an accuracy of better than 0.05 kcal/mol
introducing corrections to the 3D-RISM/HNC equations, r
storing the asymptotics of the 3D solute–solvent site TC
as well as DCFs.40 The former is corrected for the a consta
shift brought about by the supercell background charge d
sity neutralizing the solute charge, and the latter for peri
icity distorting the Coulomb asymptotics of the 3D solute
solvent site potential.

After solving the SC-3D-RISM/HNC equations~5!, ~6!,
~7! for csi(p)(r ) and hsi(p)(r ) on the periodic supercell, the
nonperiodicasymptotics of the 3D solvent–ion DCF is re



te

d
y
re

a
-

ct
e

nt

a
e
th
te
e

n

u-
th

o

p

o

s

the

ant

ince

n
dy-
in

nt
d
ite
nd

d
tz–

his
the
ver

en
rated

7465J. Chem. Phys., Vol. 113, No. 17, 1 November 2000 Thermochemistry of solvation
stored merely by subtracting the electrostatic periodic po
tial ~40! and adding back the theoretical expression~37!

csi~r !5csi~p!~r !1b~Fsi~p!~r !2Fsi~r !!. ~43!

The asymptotics~37! of the 3D solvent–ion TCF is restore
in a somewhat different way so as to keep proper deca
the 3D solvent–ion distribution function at the repulsive co
edge

gsi~r !5gsi~p!~r !exp~b~Fsi~p!~r !2Fsi~r !!/eRISM!.
~44!

The asymptotic correctionFsi(p)(r )2Fsi(r ) is essential at a
large separation between the solvent molecule and ion,
rapidly falls off inside the solvent–ion repulsive core. How
ever, when introduced as an additive term rather than a fa
in the distribution function, it results in a big error in th
internal energy obtained by the integration of the solve
ion distribution function with the interaction potential~34!.
Notice also that unlike polar molecular solvent around
ionic solute,40 in the present case there is no need to corr
the 3D solvent–ion TCF for the constant shift because
net charge of the labeled solvent molecule being the solu
zero and so the supercell neutralizing background is abs

With the ion–dipole asymptotics~37! and ~38!, calcula-
tion of the solvation chemical potential from expression~28!
requires analytical treatment of the long-range contributio
They appear in the both termshsi(r )csi(r ) and (hsi(r ))2 but
cancel out incsi(r ) due to the solvent molecule electrone
trality. On separating out the electrostatic contribution,
rest of the integral is taken just over the supercell space
which the 3D correlation functions are defined

DmHNC5Dm~es!1rkTE
Vcell

dr H 1

2
~hsi~r !!2

2
1

2
hsi~r !csi~r !2csi~r !

1
eRISM21

2eRISM
2 ~bFsi~b!~r !!2J . ~45!

To provide convergence of the electrostatic termDm (es), we
define the long-range asymptotic term as the electrostatic
tential of broadened site charges rather than~37!

Fsi~b!~r !5qi(
a

qa erf~ ur2rau/d!

ur2rau
. ~46!

The long-range component

Dm~es!52
eRISM21

2eRISM
2 rkTE dr ~bFsi~b!~r !!2

52
eRISM21

2eRISM
2 I ~es!, ~47!

is then reduced, with allowance for the electroneutrality
the solvent molecule, to the one-dimensional integral
n-

of
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ct
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I ~es!58rbqi
2(

ag
qaqgE

0

`

dk
exp~2k2d2/2!

k2

3S sin~klag!

klag
21D , ~48!

which is easily evaluated by numerical integration.41

In a similar way, the ion solvation energy~34! with the
correction for the finite size of the supercell is written as

D«5D«~es!1rkTE
Vcell

dr H busi~r !gsi~r !

1
1

2
~csi~r !dThsi~r !2hsi~r !dTcsi~r !!

1
«RISM11

2«RISM
2 ~bFsi~b!~r !!2J , ~49!

wheredTcsi(r ) anddThsi(r ) are the temperature derivative
of the corrected 3D correlation functions~43! and ~44!, cal-
culated by using the finite differences~35!. The electrostatic
term in the solvation energy obtained on separating out
ion–dipole asymptotics~46! in the 3D correlation functions
and their derivatives entering~49! has the form

D«~es!52
eRISM11

2eRISM
2 I ~es!, ~50!

where the temperature derivative of the dielectric const
~39! is taken into account.

Finally, the ion solvation enthalpy~36! is corrected as

Dh5De1rkT2aPE
Vcell

dr @ 1
2~hsi~r !!22 1

2h
si~r !csi~r !

2csi~r !1 1
2$h

si~r !drcsi~r !2csi~r !drhsi~r !%#,

~51!

whereD« is the corrected solvation energy~49!, whereas no
electrostatic correction is necessary to the latter integral s
its electrostatic components canceled out.

V. NUMERICAL RESULTS AND DISCUSSION

In order to test the SC-3D-RISM/HNC integral equatio
theory, we calculated the solvation structure and thermo
namics of the sodium and chlorine ions at infinite dilution
ambient water at temperatureT5298 K and densityrwater

50.033 34 Å23. We employed the Extended Simple Poi
Charge ~SPC/E! water model of Berendsen an
co-workers.54 The ion–water site as well as water site–s
interactions are modeled by the sum of the Coulomb a
12-6 Lennard-Jones~LJ! potentials, with the LJ diameter an
energy parameters determined by the standard Loren
Berthelot mixing rules. Following Pettitt and Rossky,12 a LJ
size of 0.4 Å is introduced for the water hydrogen sites. T
does not affect the entire potential a water molecule since
hydrogens are situated well inside the oxygen core, howe
allows one to adjust the RISM description for hydrog
bonds. For the ions, we adopted the LJ parameters elabo
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by Dang and co-workers.55 The latter have been used b
Rasaiah and co-workers in molecular simulations.53,56

The 3D treatment was done on a grid of 643 points in a
cubic supercell of sufficiently large size of 25.6 Å to includ
three hydration shells around the ion. The increase of
grid resolution to 1283 points results in a negligible refine
ment of the hydration chemical potential. The smearing
rameterd in Eqs.~40!, ~46!, and~48! was chosen to be 2.5 Å
For the solvent–solvent and solvent–ion initial vectors,
smearing parameter in Eq.~22! was taken ass51 and 1.8
Å, respectively. This provides at start the root-mean-squ
residual of magnitude less than one, which ensures fast
stable convergence. In calculation of the temperature der
tives of the 3D correlation functions in~49! by the finite
differences~35!, the temperature step-sizeDT is 2 K, and the
density derivatives in~51! were obtained in the same wa
with the density step-sizeDr to be 0.0002 Å23.

With the use of the MDIIS method,37,38,40 the solvent–
solvent integral equations~20! at given temperature and den
sity are converged to a root-mean-square accuracy of 1025 in
80 iterations with the MDIIS subspace of 10 vectors, wh
for the 3D grid of 643 points takes about 12 min on a 60
MHz Pentium PC. Solution of the solvent–ion integral equ
tions ~21! requires 30 MDIIS iterations and takes about 1
min.

The ion–solvent site radial distributions are finally o
tained from~4a! by explicit numerical orientational averag
ing of the 3D ones in direct space. We calculated the inte
over sphere by employing the 700-point set of the Repuls
scheme within the Spherical Harmonic Reduction or Elim
nation by a Weighted Distribution~SHREWD! quadrature
method.57

Figure 1 exhibits the radial distribution functions b
tween the water interaction sites and the Cl2 ion, obtained
from the SC-3D-RISM/HNC procedure, and the 1D-RISM
HNC approach as well as the molecular simulations for
system with the same potential parameters.53 It is evident
that as compared to the conventional 1D-RISM theory,
3D treatment at hand does essentially improves the pre
tion of the positions of the first and second solvation sh
peaks and the minima. Notice that the unphysical penetra
of water hydrogen sites towards the negatively charged2

ion, typical for the former is completely eliminated in th
latter. The extrema of the hydrogen–chlorine distributi
now fit well the simulation results. The position of the fir
peak of the oxygen–chlorine distribution is significantly im
proved too, and the second peak is much better formed
situated closer to the simulation data. This demonstrates
improved description of the orientational ordering of wa
molecules in the ion solvation shell. As a shortcoming,
present 3D approach underestimates amplitude of the so
tion shell oscillations. To treat this point requires to a
bridge corrections to the molecular 3D-HNC closure~7!.
Lombardero and co-workers have shown for molecu
liquids27,58 and molecular mixtures59 that the predictions of
the MOZ equation can be significantly improved by applyi
a generalization of the reference hypernetted chain~RHNC!
closure60 with Verlet’s modified approximation.61 This
would refine the description of the solvent–ion distributio
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in the contact region which gives a significant contribution
the solvation free energy. It should be noted, however, t
for liquids with strong hydrogen bonding like water an
methanol, the effect of these bridge corrections on the
solvation structure is questionable. Lombardero a
co-workers,30 and Richardi, Millot, and Fries29 also found
that the use of the hard-sphere bridge functions within
MOZ/RHNC approach scarcely affects both the structure
thermodynamic properties of these liquids at ambient con
tions. They reasonably attributed this failure to the sha
discrepancy between the spherically symmetric bridge fu
tions of hard spheres which form closely packed structu
and the local geometry of loosely coordinated liquid li
ambient water showing tetrahedral ordering. Neverthele
this conclusion should be applied to an ion hydration sh
with caution, and encourages further investigation and sea
for bridge functions incorporating those geometric feature

Figure 2 makes a comparison of the radial distributi
functions for the water interaction sites and the Na1 ion.
There is some improvement for the first peak height of
hydrogen–sodium distribution in the 3D approach agai
the 1D-RISM treatment, whereas the predicted height of
oxygen–sodium peak is worsened. Notice, however, that
oxygen peak in the SC-3D-RISM approach is noticea
wider. This yields the oxygen running coordination numb
of the first solvation shellNO–Cl2

~3D-RISM!
54.9, which is higher

FIG. 1. Radial distribution functions between the Cl2 ion and the oxygen
and hydrogen interaction sites of water solvent molecules,gO–Cl2(r ) and
gH–Cl2(r ), at ambient conditions. Comparison of the orientational avera
of the 3D water–ion distribution functiongW–Cl2(r ) obtained from the SC-
3D-RISM/HNC theory with those following from the conventional, 1D
RISM/HNC approach, and the molecular simulations~Ref. 53! ~solid, dash–
dotted, and short-dashed lines, respectively!.
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than the valueNO–Cl2
~RISM!

54.4 following from the 1D-RISM
method, and is closer to the simulation oneNO–Cl2

~MD!
55.8.

Again, the agreement with simulations could be improved
employing bridge corrections, as discussed above for
water–chlorine radial distributions.

Beside the radial distribution functions of solvent sit
around the ion, the SC-3D-RISM approach provides the
entational dependence of solvent molecules. Equally, it
be seen as a 3D spatial distribution function of the
around the labeled solvent molecule. Figure 3 shows sect
of the 3D distribution of the Cl2 ion around a water mol-
ecule, passing through its oxygen. Water oxygens form
first and second solvation shells around the Cl2 ion that are
of small height about 1.2–1.6 almost everywhere, except
the high narrow peaks at the arrangements with the ion
cated in front of one of the water hydrogens. The first a
second peaks at these positions reach respecti
gW–Cl2

~max1!
573.7 andgW–Cl2

~max2!
53.0, even the latter higher tha

the rest of the solvation shell. The two peaks are attribute
the formation of solvation structures of water molecu
hydrogen-bonded to the Cl2 ion due to the asymmetry of th
electrostatic field of a water molecule, well known from t
1D-RISM/HNC22,25 and 3D-RISM/HNC treatment40 as well
as simulations.53,65,66 The SC-3D-RISM/HNC theory sub
stantially improves the predicted positions of the hydrog
bonding. On orientational averaging, these narrow peaks
into the much lower first peaks of the chlorine–water oxyg
and hydrogen radial distributions of heightgO–Cl2

~max1!
53.0 and

gW–Cl2
~max2!

52.3 ~Fig. 1 and 2!. The saddle point between the tw
maxima of the first solvation shell~upper plot in Fig. 3! still

FIG. 2. Same as in Fig. 1, but for the Na1 ion.
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has a relatively large value of aboutgW–Cl254 ~seen as a
peak in the middle plot!.

The 3D distribution of the Na1 ion around a water mol-
ecule is depicted in Fig. 4. It has a single large maxim
gW–Na1

~max1!
550.3 corresponding to the arrangement with t

FIG. 3. Three-dimensional distribution function between the labeled w
molecule and the Cl2 ion, gW–Cl2(r ), following from the SC-3D-RISM/
HNC theory for the ion in ambient water. Sections of the 3D water–
distribution in the orthogonal planesXOY, XOZ, andYOZpassing through
the oxygen site~upper, middle, and lower plots, respectively!. The number
at the peaks shows their height. The water molecule is situated in p
XOY, and its dipole moment is directed along axisOX. The oxygen and
hydrogen interaction sites have Cartesian coordinatesrO5(0,0,0) Å and
rH5(0.5774,60.8165,0) Å.
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Na1 ion facing the water oxygen. The second shell pe
reaches heightgW–Na1

~max2!
52.8. Notice that the first peak is na

row in the molecular plane where it is concentrated mainly
the OX axis ~upper plot!, whereas it becomes a wide ‘‘arc
stretched over the oxygen in perpendicular to the molec
plane ~middle plot!. Again, such arrangements of the Na1

ion on the arc around the oxygen correspond to the direct
usually occupied by hydrogen bonds around a water m
ecule in uniform ambient water. Unlike the hydrogen bon

FIG. 4. Same as in Fig. 3, but for the Na1 ion.
k

t

le

ns
l-
-

ing to Cl2, water molecules show a simple dipole-like or
entation around the Na1 ion. The two small subpeaks in th
lower plot section of the first hydration shell are just t
YOZ-sections of the arc ends.

The hydration thermodynamics of the Cl2 and Na1 ions
in ambient water is shown in Table I. The comparison
veals a qualitative agreement of both the 1D-RISM/HNC a
the SC-3D-RISM/HNC approaches with the simulations a
experiment. It follows from both integral equatio
theory22,25,47,48 and simulations53,55,56,65–69of hydration of
simple ions that its thermodynamics as well as structure
very sensitive to the details of the ion potentials, such
softness of the ion repulsive core. With the appropri
choice of the parameters for the site–site interactions,
Roux, and Karplus48 achieved a good agreement between
1D-RISM/HNC theory and experiment. Our goal, howev
is to show the superiority of the SC-3D-RISM theory ov
the site–site one rather than to fit to experimental data
adjusting the parameters. It is evident that the 3D treatm
noticeably improves the prediction of the solvation ener
and chemical potential as compared to the conventional s
site approach, which is very sensitive to the behavior of
solute–solvent distributions in the repulsive core regio
This also results in a noticeable improvement for the b
hydration entropies,DsV andDsP , prone to errors as a dif
ference between close values calculated. Further impro
ment can be obtained by refining the parameters of the io
water potentials as well as by employing dielect
corrections. Yu, Roux, and Karplus48 showed that the simple
dielectric correction in the form of scaling the site–site Co
lomb potential by a constant10,70,71brings the thermodynam
ics of ionic hydration closer to the experimental values.
has been discussed above, a proper way within a 3D-RI
theory for an ion–molecular liquid40 is to employ the consis-
tent dielectric corrections of Perkyns and Pettitt.15 For the
SC-3D-RISM/HNC approach, this will be done in futur
work.

VI. CONCLUSION

We have elaborated a self-consistent 3D-RISM/HNC
tegral equation theory for simple ions at infinite dilution in
polar molecular solvent. The main advantage of the SC-3
RISM approach is that it eliminates the inconsistency in
positions of the ion–solvent site distribution peaks. The la
is related to the problem of ‘‘auxiliary sites’’ in the conven
tional, 1D-RISM/HNC theory, and arises due to a stro
alignment of solvent molecules in the solvation shell arou
the ion attracting the solvent molecule sites of oppos
charge. The better description of the ion–solvent distribut
functions improves the predictions for the solvation therm
dynamics as well. We tested the proposed theory by the
ample of hydration of the Na1 and Cl2 ions in ambient water
at infinite dilution. The hydration structure obtained from t
SC-3D-RISM/HNC theory shows a substantially bet
agreement with simulations than that following from the 1
RISM/HNC approach. A noticeable improvement of the p
dictions for the hydration thermodynamics is also observ

The SC-3D-RISM/HNC theory can be further advanc
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TABLE I. Thermodynamics of solvation of the Cl2 and Na1 ions in ambient water.

Approach
Dm (Dm (es))a

~kcal/mol!
De (De (es))a

~kcal/mol!
Dh

~kcal/mol!
DsV

~cal/mol!
DsP

~cal/mol!

Cl2

SC-3D-RISM/HNC 279.5 ~248.5!a 293.5 ~253.7!a 298.9 247.0 264.8
1D-RISM/HNC 283.9 2100.1 2105.7 254.3 273.0

MDb 286.0 216.
experiment 280.5c 288.2c 220.1e 225.8c

273.9d 281.8d 226.5d

Na1

SC-3D-RISM/HNC 280.1 ~248.5!a 290.2 ~253.7!a 295.6 234.0 252.0
1D-RISM/HNC 277.3 288.8 294.1 238.6 256.4

MDb 282.9 214.
experiment 289.6c 299.9c 223.8e 234.5c

296.4d 2106.6d 234.2d

aValues in parentheses are the electrostatic contributions in the excess chemical potential and energy o
tion, given by expressions~47! and ~50!, respectively.

bFrom Reference 53.
cFrom Reference 62.
dFrom Reference 63.
eFrom Reference 64.
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in a number of points. It can be readily generalized to
case of finite ionic concentrations by including ions into t
solvent surrounding the labeled solvent molecule and
This requires the consistent dielectric corrections of Perk
and Pettitt15 to be employed to provide a consistent descr
tion of the dielectric properties of ion-molecular solutio
similarly to their generalization to the 3D-RISM/HNC
case.40 Such a dielectric correction would improve the pr
dicted solvation thermodynamics as well. Finally, it seems
be worthwhile to modify the molecular 3D-HNC closure f
the 3D solvent-ion correlations by using the molecular g
eralization of Verlet’s modified bridge corrections61 within
the RHNC approach.60 This would improve the description
of the solvent–ion distributions in the contact region whi
gives a significant contribution to the solvation free ener
However, for solvents with strong hydrogen bonding ord
ing like ambient water and methanol, appropriate brid
functions are required which would allow for the local g
ometry of the ordering.

With a refinement of the potential parameters as wel
these modifications, the SC-3D-RISM treatment could p
vide the description of the structure and thermodynamics
solvation of simple ions in a good agreement with expe
ment. On the other hand, it can be used to elaborate a f
tional form of bridge corrections necessary to improve
SC-3D-RISM treatment of a polar molecular liquid, and
extend it to the case of molecular ions. Such short-ra
bridge corrections would be advantageous for modificat
of the 1D-RISM/HNC theory as well. The latter is essentia
simpler and faster than the 3D-RISM treatment, and thu
much easier to combine with MC simulated annealing72 or
generalized-ensemble MC simulation methods.73,74 This can
provide a powerful and efficient tool for reliable predictio
of conformations of biomolecules with due account for t
water solvent effect at the microscopic level.11,72 For hydra-
tion of hydrophobic molecular solutes, the predictive ca
bilities of the RISM/HNC theory can be significantly im
proved by adding the repulsive bridge correction~RBC!.24
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The proposed SC-3D-RISM approach would allow one
elaborate short-range bridge corrections to the RISM the
for charged and polar molecular solutes.
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